论文部分内容阅读
对于航空航天材料而言,低密度、高强度是人们追求的永恒主题,特别是针对空间应用的新材料。采用SiC空心球制备的多孔SiC陶瓷具有尺寸稳定、轻质、高强的特性及耐高温、耐磨损、耐腐蚀、抗氧化、高热导和低膨胀系数等优点,成为一种新型轻质空间光机结构材料。但SiC空心球型材料成型制备难度大,加之SiC本身难以烧结致密,到目前为止,我国关于SiC空心球制备的相关报道很少,不仅成型工艺复杂,且制备的SiC空心球难以满足实际应用要求,限制了其推广应用。本文采用熔盐法和模板法两种成型工艺制备SiC空心球,并选用先驱体浸渍裂解工艺(PIP)、化学气相渗透工艺(CVI)以及先驱体浸渍裂解-化学气相渗透联用工艺(PIP-CVI)增强SiC空心球,获得了强度高、力学性能好的SiC空心球。选用凝胶注模-气相渗硅工艺(GC-GSI)将增强后的SiC空心球添加到SiC陶瓷中,成功制备出了性能优良的多孔SiC陶瓷。研究了熔盐法和模板法制备SiC空心球的原理及工艺条件,得到了SiC空心球的制备新方法。熔盐法的原理为:熔盐为反应提供一个液相环境,硅和碳在熔融状态下的盐中进行反应,使得硅碳反应能够在较短的时间和较低的温度下进行。研究了碳硅比对熔盐法制备SiC空心球的成分影响,确定了碳硅比为3:1、反应温度为1400℃的工艺条件,制备出平均直径为1.69mm,厚度为40μm的SiC空心球。模板法采用面粉和炭黑制备碳模板球,在SiC粉料与碳模板球质量比为4:3的条件下制备出直径为4.56mm、厚度为0.61mm的SiC空心球,模板法具有球形度好、成球率高的优点。针对模板法制备的SiC空心球强度低、力学性能差的问题,选用了PIP工艺、CVI工艺及PIP-CVI联用工艺增强SiC空心球,确定了三种工艺的具体工艺参数。PIP工艺对SiC空心球的增重致密效果主要集中在第一周期,PIP一周期后,SiC空心球密度达到1.409g/cm3,球壳内部孔隙率为0.67%。CVI沉积温度对SiC空心球显微结构有重要的影响:沉积温度为950℃时,空心球表面生成生成大量SiC小颗粒,为独立的球状;沉积温度为1050℃时,SiC空心球表面为球状SiC。对SiC空心球在沉积温度1050℃、沉积时间30h的条件下进行CVI增强,增强后的SiC空心球密度达到1.401g/cm3,球壳内部孔隙率为0.9%。PIP-CVI联用工艺有效的结合了PIP工艺和CVI工艺的优势,制备了力学性能优异的SiC空心球,同时SiC空心球表面致密,断截面处可以看到明显的分层,外层为CVI连续沉积的SiC层,内层为PIP SiC空心球基底,两层之间连接紧密,共同提高了SiC空心球的性能。对比研究分析了三种工艺条件下制备的SiC空心球的成分、高温失重及力学性能,优选出了PIP-CVI联用工艺作为SiC空心球的增强工艺。三种工艺条件下制备的SiC空心球主要成分为α-SiC和β-SiC,CVI SiC空心球中还产生残余C,主要是由于高温沉积促进了MTS分解成含C中间产物的形成过程,多余的含C中间产物裂解产生游离C。三种工艺条件下制备的SiC空心球都有如下性能规律:随着SiC空心球直径的增加,空心球最大压应力增加,断裂能量增加,压缩模量有所下降,压缩强度基本不变。其中PIP-CVI联用工艺增强的SiC空心球力学性能最优,最大压应力达到161.67N,断裂能量为6.62?10-3J,压缩强度为20.79MPa,压缩模量为5.86GPa,比单纯PIP或CVI工艺都要高。研究了凝胶注模-气相渗硅工艺制备添加SiC空心球的多孔SiC陶瓷的工艺条件,制得了性能良好的多孔SiC陶瓷。炭黑在陶瓷浆料中较难分散,炭黑分散剂PVP对其有很好的分散效果。凝胶注模工艺制备多孔SiC陶瓷的素坯在干燥过程中,失重率为10.2%,体积收缩率为2.2%,成型效果良好稳定。气相渗硅后的多孔陶瓷内部致密,空心球与陶瓷基底之间界面清晰,密度为2.19g/cm3,孔隙率为2.2%。对其力学性能进行分析表征,多孔SiC陶瓷的压缩强度为147.4MPa、压缩模量为15.67GPa,后续可通过夹心结构设计,将其应用于新型轻质空间SiC反射镜的制备。