Sr2VxMyMo2-x-yO6(M=Fe,Co)基高电导率钙钛矿固体氧化物燃料电池阳极材料的性能研究

来源 :济南大学 | 被引量 : 0次 | 上传用户:cool_1944
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电子/氧离子混合传导钙钛矿氧化物作为固体氧化物燃料电池(SOFC)阳极因表现出高催化活性、优异的抗积碳性能而广受关注。然而,大多数空气下制备的钙钛矿阳极因长期暴露在燃料气中易发生相分解,导致电池耐久性较差。因此,目前迫切需要开发一种在还原环境下具有高催化活性、高导电性和高结构稳定性的新型钙钛矿阳极。还原气氛制备的Sr V0.5Mo0.5O3(SVMO)因在氢气(H2)下具有良好的结构稳定性和超高的电导率而备受关注,但其对燃料的催化活性有待提高。本工作我们以钙钛矿SVMO为基础,采用掺杂策略,开发了对燃料气具有优异催化活性的Sr2V0.1Co0.9Mo O6(SVCMO)和Sr V1/3Fe1/3Mo1/3O3(SVFMO)两种钙钛矿阳极材料,并对其结构、电化学性能等进行了系统的研究。主要内容如下:通过固相法在750℃H2气氛中还原4 h,我们成功制备了四方结构SVCMO双钙钛矿。H2气氛下SVCMO电导率在100-800℃为33.2-21.6 S cm-1,远高于同环境下Sr2Co Mo O6(SCMO)的电导率(0.55-2.7 S cm-1)。在850℃下SVCMO对称电池阳极极化电阻为1.1Ωcm~2,比SCMO减小了1Ωcm~2。制备的SVCMO|SDC|LSGM|LSCF单电池以H2为燃料气在750-850℃最大功率密度分别为199、358、561 m W cm-2。本研究表明,以SCMO双钙钛矿为基础,通过B位V离子掺杂制备的SVCMO阳极成功地优化了材料电导率及电化学催化性能。通过固相法在5%H2/Ar还原条件下,我们成功合成了B位Fe、V、Mo共掺杂的SVFMO单钙钛矿阳极。由于异价Fe、V、Mo离子共存于SVFMO的B位点,形成了更多的小极化子对,提升了SVFMO的电子导电能力,在H2气氛下100-800℃电导率为508.4-207 S cm-1。即使其在多孔结构状态下(模仿阳极工作状态),在800℃下的电导率也高达70 S cm-1,可以与传统的Ni基复合阳极相媲美。Fe、V、Mo共掺杂在SVFMO内产生了更多的氧空位,增强了对燃料气的催化能力。以SVFMO为阳极制备的单电池在750-850℃最大功率密度分别为267、484、720 m W cm-2。SVFMO作为SOFC阳极在H2环境下表现出更高的结构稳定性,经过长达60 h的稳定性测试,性能几乎没有衰减。本研究表明通过B位共掺杂制备的SVFMO作为SOFCs的阳极在燃料气氛下表现出更高的电导率、催化能力和结构稳定性,从而提升了单电池的整体性能。通过固相法在还原气氛下制备的SVMO和SVFMO在30℃电导率分别高达2250.9和508.4 S cm-1。由于其超高的电导率,我们尝试将两种钙钛矿材料作为锂离子电池新型负极材料进行研究。经过电化学测试,SVMO和SVFMO电极在0.2 A g-1的电流密度下首次放电比容量分别为234.1和166.5 m Ah g-1,经过循环测试,两种材料均呈现先降后升的趋势,至260圈,SVMO和SVFMO的容量升至165.5和199.4 m Ah g-1,表明两种材料具有作为锂离子电池新型负极的潜力,为探索钙钛矿作为锂离子电池的负极提供了思路。
其他文献
卷积神经网络因其独有特性被广泛应用到各个行业,伴随着对卷积神经网络模型精度的追求,网络模型也在往更深层次与更复杂的架构下发展,这就要求部署平台要有与之匹配的硬件条件和资源开销,这也对后续模型部署带来更大的挑战。过去搭载神经网络的通用处理平台都是通过大量的浮点运算单元在加速卷积训练时具有较好的效果,但是与之而来的是高功耗、昂贵的硬件资源开销,同时也带来无法在嵌入式等资源开销受限的平台部署等问题。FP
学位
非平衡学习是针对数据集中各类样本数量不平衡分布的情况下进行分类的一种学习方法。传统的机器学习技术在很多应用中取得了重大的成功,但对于非平衡的数据,由于不同类样本分布不平衡,导致传统机器学习方法在这类问题中失效。当前针对非平衡学习问题主要有三个层面的解决方案:数据层面方法,代价敏感方法,集成学习方法。数据层面的方法由于其易于部署且独立于分类器的优点,受到了广泛的重视与深入的研究。然而当前主流的数据层
学位
随着工业生产、医疗、教育等不同领域的智能化发展,流程对象数据逐渐涌现,这些数据由存在前后影响关系的多个环节生成,并且由不同的采集设备源源不断的传输到存储空间中。这些数据往往随着时间变化且无规则的无限增长,存在数据维度高而知识密度低,数据价值随时间增长而降低等特点。无限的数据增长不但会增加存储设备的存储压力和设备成本,也增加了数据分析的困难性,冗余和过期的数据会降低数据分析结果的实用性和有效性,因此
学位
睡眠分期是诊断睡眠相关疾病的一项基础性工作,能够客观反映睡眠质量。但由睡眠技师人工判读睡眠阶段枯燥、费时,且标记结果具有一定的主观性,容易误判。近年来,我国儿童睡眠问题愈加显著,睡眠不足和睡眠相关疾病严重危害着儿童的身心健康。然而,我国睡眠医学发展较晚,相关医疗资源严重稀缺,亟需一种可靠的儿童自动睡眠分期方法,辅助医生进行儿童睡眠相关疾病的诊疗。目前,睡眠分期的研究大多使用单通道脑电信号,少量使用
学位
随着社会经济和科技的进步,建筑行业不仅有了更大的发展空间,传统建筑技术也得到了进一步改进,绿色施工技术逐渐成为目前建筑行业应用的主要手段。该技术在环保、节能等方面有很大优势,可以促进建筑企业的持续稳定发展。文章就绿色施工技术及其自身的意义进行了简要阐述,并结合实例进行了深入分析和探讨,以供参考。
期刊
随着人们生活水平的提高,机动车成为人们日常出行的常用交通工具。与此同时,汽车的数量在逐年增加,而道路建设无法承担机动车数量快速增长带来的交通压力,城市道路拥堵成为社会热议的民生问题,不可避免地导致空气污染以及日常通勤时间的延长,人民幸福指数大幅下降。建立高效、智能的交通系统是解决当前问题的有效途径,其中精确的交通流预测可为智能交通灯控制和车辆路径规划等智能交通系统核心功能提供数据支撑。复杂路网下交
学位
近年来,随着人脸识别技术的广泛应用,一些存在于人脸识别技术本身的问题也开始受到了人们的关注。相较于指纹、虹膜等获取成本较高的生物特征,人脸信息由于其易获取的特性,使得打印攻击、重放攻击、面具攻击等攻击方式对用户的隐私和财产安全都造成了极大的威胁,因此在人脸识别的基础上对用户是否是本人进行验证,对人脸识别系统的现实应用具有极为重要的意义和价值,也是人脸识别技术真正得到广泛应用的重要前提和保障。人脸欺
学位
子宫内膜癌的发病率在世界范围内逐渐上升,严重危害着女性健康。子宫内膜活体组织病理学检查是确诊子宫内膜癌的“金标准”,通过病理医生在显微镜下进行组织病理学评估作出病理诊断,这个过程费时费力且高度依赖医生的专业程度和诊断经验,因此借助不断发展的数字病理和深度学习技术,利用计算机对子宫内膜病理图像进行辅助诊断,具有重要的研究意义和应用价值。近年来,计算机辅助诊断技术在各种癌症病理图像的诊断上都不断发展,
学位
变分水平集模型由于其封闭光滑的轮廓、坚实的数学理论支撑、易于拓扑形变、易于与其他理论结合等优势被广泛的应用到图像分割中。但是对于一幅受到严重非均质和噪声影响的图像,它往往存在边缘模糊、不同区域的灰度重叠度高、同域内强度变化度大等问题,现有的变分水平集模型很难准确分割严重非均质图像。分数阶微分可以非线性增强图像质量,在有效的增强高频边界信息的同时保留低频区域信息。然而,分数阶微分阶数的选取往往需要大
学位
建筑工程规模的不断扩大和建筑工程数量的日益增多,导致了环境污染问题越来越严重。因此,加强绿色节能技术的研究,对于减少环境污染,促进建筑业可持续发展十分必要。文章介绍了建筑工程绿色节能技术的相关概念和特点,并详细分析了建筑工程施工环保节能现状以及面临的节能与环保问题,仅供参考。
期刊