论文部分内容阅读
为了实现阵列天线快速、精确波束扫描,这就需要每个天线单元能够快速、准确转动到位,要求伺服系统具备响应速度快,定位精度高。有刷直流电机具有调速范围宽,响应速度快,定位精度高,动、静态特性优良,且结构比较简单等优点。因此可以采用微型有刷直流电机驱动天线单元。现场可编程门阵列(FPGA)具有丰富逻辑资源、开发周期短,可反复编辑等优点。采用基于FPGA的数字电路来控制直流电机,可以实现多轴电机控制。本文研究了微型直流电机伺服控制算法,并基于FPGA设计了微型直流电机控制器IP核,实验验证了该IP核对微型直流电机的驱动性能。为实现微型直流电机快速、精确位置控制,本文仿真研究了微型直流电机闭环控制系统。首先阐明了直流电机基本结构和工作原理,在此基础上推导了直流电机数学模型;然后研究了比例-积分-微分(PID)控制算法,建立了基于Simulink的微型直流电机控制系统仿真模型。仿真结果表明单PID算法驱动微型直流电机,系统存在超调,无法同时兼顾响应时间短和超调量小,且无法对电机转动过程进行控制。为了优化系统动态性能,研究了速度剖面、前馈控制算法,提出了一种PID控制、速度剖面和前馈控制相结合的新型直流电机伺服控制算法。仿真结果表明优化算法后,电机位置能较好地跟随给定输入,可对电机进行过程控制;且无明显超调,响应时间短,定位精度高。为实现基于FPGA的多轴微型直流电机伺服控制,本文采用Verilog HDL语言设计了微型直流电机控制器IP核,以实现前述伺服控制算法。按照功能划分,该IP核包括:PositionControl模块、PWM模块、QEP模块、Avalon接口模块。由于IP核内部执行操作较多,且时序复杂,利用有限状态机,严格控制IP核调用各模块的时序关系。为了减少IP核使用的逻辑单元数量,优化各模块中硬件描述语句,尽量使程序精炼明晰。利用仿真工具对IP核进行了功能和时序仿真验证,结果表明该IP核内部控制时序正确,计算结果符合预期。最后搭建了实验测试平台,建立了可编程片上系统(SOPC),编写了Nios Ⅱ软件工程,初步实验结果表明单PID算法难以实现快速精确地控制本文所选微型直流电机,存在较大超调量,对小角度的调节能力较弱,无法实现高精度定位;对控制算法进行优化,采用分段控制和电机启停监测模式,有效改善伺服系统动态性能,减小了超调量,提高了伺服系统对小角度的定位能力,缩短了系统响应时间;并实验测试了该IP核对不同电机系统的差异具有较强适应性。