【摘 要】
:
“互联网+”背景下,网络回收商在促进废弃电器电子产品(Waste Electrical and Electronic Equipments,WEEE)规范高效回收的同时,对线下非正规回收商回收市场占比造成一定挤压。但消费者固有的回收习惯仍让线下非正规回收商拥有较大的生存空间,形成网络回收商和线下非正规回收商共存的局面。消费者作为WEEE的持有者,参与回收时不仅会考虑客观回收价格,还结合自身主观认知
论文部分内容阅读
“互联网+”背景下,网络回收商在促进废弃电器电子产品(Waste Electrical and Electronic Equipments,WEEE)规范高效回收的同时,对线下非正规回收商回收市场占比造成一定挤压。但消费者固有的回收习惯仍让线下非正规回收商拥有较大的生存空间,形成网络回收商和线下非正规回收商共存的局面。消费者作为WEEE的持有者,参与回收时不仅会考虑客观回收价格,还结合自身主观认知作出线上线下回收渠道选择决策。因此,基于WEEE回收现状,考虑不同的消费者行为,研究网络回收商与线下非正规回收商之间的关系具有重要意义。本文以网络回收商和线下非正规回收商两大回收主体构成的WEEE双渠道回收为研究对象,在对WEEE回收、消费者行为和回收渠道三方面相关研究进行梳理的基础上,考虑消费者网络回收偏好和回收溢价两种消费者行为,构建网络回收商和线下非正规回收商双渠道竞争、合作回收模型,探讨两个不同的消费者行为对两大回收主体回收决策和回收模式选择的影响,并通过对相关参数赋值,运用matlab进行数值模拟,直观地展现回收决策和回收模式选择策略随相关变量变化而改变的情形。主要内容如下:首先,在WEEE双渠道竞争、合作回收模型构建的基础上,运用博弈论求解得到不同回收模式下网络回收商和线下非正规回收商的最优回收决策,分析消费者网络回收偏好、回收溢价行为对两大回收主体在不同回收模式下回收决策的影响。研究发现,无论竞争还是合作,网络回收商的回收量和回收利润均随消费者网络回收偏好的减小或回收溢价水平的提高而降低;线下非正规回收商的回收量和回收利润均随消费者网络回收偏好的减小或回收溢价水平的提高而提高。其次,在得到最优回收决策基础上,为研究网络回收商与线下非正规回收商如何实现合作,促进WEEE规范化回收,将不同回收模式下的回收决策进行对比,分别得到网络回收商和线下非正规回收商回收模式选择策略,并分析不同消费者行为对回收模式选择策略的影响。研究发现,只有在消费者网络回收偏好较小的情况下,网络回收商会与线下非正规回收商合作,而消费者回收溢价水平不会影响双方合作,只对合作回收意愿产生影响。对线下非正规回收商来说,在消费者网络回收偏好较大或消费者回收溢价水平较低时,线下非正规回收商会与网络回收商合作。最后,对不同消费者行为下网络回收商和线下非正规回收商回收决策和回收模式选择策略进行总结,为提高网络回收商的回收收益以及促进WEEE的规范化回收,基于研究结论,对网络回收商的回收策略和政府的补贴策略提供相关建议,并进一步指出未来研究方向。
其他文献
苹果是我国的第一大水果,栽培面积和产量均居世界首位。调查显示,我国苹果面积、产量占世界的50%以上,均居世界首位。苹果内在含有多种高营养价值的物质,其中,苹果内含有的黄酮类化合物对人体健康发挥着举足轻重的作用。目前,对于苹果内黄酮类化合物的检测手段主要通过化学有损检测的方法进行,该方法不仅成本高,还因为繁琐的检测流程需要投入大量的人力物力。因此,需要一种能够快速无损且成本较低的检测方法,以便携式、
卒中病发是造成人类死亡的主要疾病之一,并且患者在接受治疗后仍会存在严重的后遗症。目前传统的诊断方法依赖于医学影像信息,并且需要具有熟练技能的医生来对患者的状况进行诊断确认。同时,医学影像成像本身耗时久,医生和患者之间难以达到信息的有效沟通。机器学习等前沿技术能够在降低人为干预的情况下以医学影像为主要依据来自主判断患者卒中情况,因此可以通过引入计算机辅助系统帮助医生提升卒中诊断效率。本文在心电图信号
三维视觉技术是计算机视觉领域中的一个重要方向,立体对象识别和检索任务是三维视觉领域中的一个重要的研究领域,被广泛的应用于自动驾驶,虚拟现实/增强现实,游戏,产品设计等应用领域。如何从立体对象数据中获取高质量的立体对象特征表示在识别和检索中具有重要的作用。对于立体对象的多视图数据,视图之间存在着一定相似性或差异性的关系,如何合理的利用视图的关系进行合理的建模值得被进一步的研究。当前的研究工作大多关注
储能是以可再生能源为主体的新型配电系统重要元件,是实现我国“2030碳达峰、2060碳中和”双碳目标、能源转型、低碳可持续发展的重要途径。储能具有电源和负荷双重特性,可提供削峰填谷、平滑间歇式电源波动性、提高清洁能源消纳、调峰调频、电压稳定等多重服务。近年来,储能对提高新型电力系统供电质量和可靠性也越来越受到国内外学者的关注,但是储能对供电可靠性的贡献与其运行策略及荷电状态(SOC)分布密切相关,
气密性是换热器、制冷装置和压力容器等密闭设备的关键性能指标。密闭设备在使用过程中一旦发生泄漏,轻则使设备性能下降,重则导致安全事故。因此,密闭设备气密性检测技术的研究与应用尤为重要。现有气密性检测方法众多,有些甚至有较高的检测精度,但是大多只能判断密闭设备是否泄漏,不能实现漏点精确定位。皂泡法、压力水检法是目前最常用的密闭设备漏点定位方法,但漏点识别与定位高度依赖于人工目视技能,容易导致漏检或误检
脑梗目前已经成为全球第五大死亡因素,在中国每年有一百多万人死于脑梗。脑梗核磁共振成像(Magnetic Resonance Imaging,MRI)的自动分割对于脑梗的诊断具有重要意义。近年来,基于深度学习的图像处理算法发展迅速,在医学图像处理领域展现出巨大的潜力。本文所研究的脑梗图像分割任务主要面临以下两大难点:首先,全监督学习依赖大量的标注数据,需要由相应的专家对病灶区域进行手工标注,将耗费大
随着船舶技术的发展,海洋已成为人类生存活动所需的重要场所。无人船在海面航行具有体积小、速度快、自主能力强和灵活程度高等特点,已成为海面任务执行的关键手段,在海面任务中能够减少经济损失和人员伤亡。但随着任务需求的逐渐增加,单艘无人船的任务执行能力受限,多无人船协同能够提高任务执行效率,在理论研究和实际应用中具有重要价值。任务规划作为多无人船协同的关键技术,对提升无人船的自主能力起到至关重要的作用。多
切换系统作为一类特殊的混合动态系统,常常用来描述很多机理复杂的系统模型,其相关研究也愈发深入且广泛。而现代控制领域引入网络传输技术的同时不可避免地诱导出很多问题,如网络攻击、能量受限以及带宽有限等。如此,引入网络传输技术无疑给本身就具有混杂性的切换系统分析与设计提升了难度等级。此外,动态事件触发机制在减少能量消耗,降低数据更新频率等方面有着一定优势,但是目前对其的研究还处于初步阶段。因此,针对网络
聚类是数据挖掘中一种重要的无监督学习方法。随着无监督学习的发展,大量的聚类算法被提出,但没有一种聚类算法可以适用于所有类型的数据集,不同算法各有优缺点。聚类集成算法是利用一种共识函数将多个聚类成员结果进行集成,使集成后的结果优于单个聚类算法得到的结果。但传统聚类集成算法也存在一些问题:随着成员数量的增加,即出现一些冗余的聚类成员,不但增加了集成复杂度,而且干扰了最终结果的准确性;大多数聚类集成算法
妆容迁移技术是风格迁移技术的延伸,其目标是将参考图像上的妆容信息迁移至目标图像上,实现改变人物妆容风格的目的。本文在对现有的妆容迁移算法进行充分的研究之后,围绕妆容配对数据的生成、网络结构的研究以及面向人脸识别的去妆算法,一方面对SCGAN(Style-based Controllable GAN)算法进行了改进和优化,提升了算法的妆容迁移质量;另一方面提出了一种面向人脸识别的自动去妆算法,提升了