我国破产和解制度的漏洞及革新

来源 :云南大学 | 被引量 : 0次 | 上传用户:tyzhaoxiqing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
伴随着我国对破产企业救治和清算工作的稳妥推进,破产相关案件的优化审理对市场规范、资源整合的重要影响也愈加凸显。破产和解制度作为破产的三大支柱之一,在对企业救治中发挥着积极作用,但其较之破产重整制度,其运用率仍然较低。探其缘由,一则是在美日等国对传统破产和解制度的深度改革,导致和解制度面临退出历史舞台之尴尬境地。另一则是由于作为替代机制的破产重整制度不断革新和发展,我国破产和解制度在立法上存在缺漏,导致破产和解制度在实践中缺乏可操作性的指引。我国目前有且仅有《企业破产法》对破产和解制度进行了基础性、概括化的笼统性规定,该立法过于简单难以应对复杂的案件事实。最高人民法院虽就破产相关问题发布了大量的司法解释和复函,但并无具体的司法解释或会议纪要对其进行实质性增补,各地司法性文件虽就破产案件的审理制定了具体的审理规程,但涉及破产和解的规定要么过于简单,要么存在较大差异。在对中国裁判文书网公布的裁判文书进行下载、统计、分析,可知破产和解制度的启动机制和运行机制并不全面,具体表现在破产和解的申请主体存在争议、裁定受理破产和解申请的司法审查标准不一、破产和解协议成立之法律效果不一及裁定认可破产和解协议的司法审查标准缺失等方面。上述问题的出现,在很大程度上还是由于破产和解制度上的缺漏,立法上的缺失,导致实践中无法适用统一的规范指引。完善破产和解制度的立法,为审理破产和解申请提供具有可操作性的制度指引,明确并扩大破产和解申请主体、完善破产和解制度的启动及运行机制,不仅使完善社会主义市场主体的救治和退出之路行之有径,同时对依法开展破产案件审理、稳步推进破产企业救治与清算扫清障碍,还为破产案件审理工作的规范化、法治化提供可靠保障。
其他文献
科学技术在进步,时代在不断变换,企业之间的竞争也越来越激烈。营运能力是验证其企业健康和是否可持续发展的核心指标,作为企业财务分析的四大指标之一,影响企业的发展前景。分析企业的营运能力,判断企业的营运状况,可以帮助投资者、经营者、债权人以及其他利益相关方了解企业过去、评价企业现状、预测企业未来,提供准确的信息以做出正确决策,还可以帮助企业有效避免经营方面的风险,提高竞争力。
期刊
深度学习在医学图像分析中的可使用性和潜力在过去几年中显著增加,由于医学图像的手动注释对于临床专家而言非常耗时,因此可靠的自动分割算法是处理大量医学图像数据注释的理想方式。医学图像的自动分割算法用于描述医学图像的解剖结构和其他感兴趣区域,并指导放射治疗和改进放射诊断。受深度学习的成功驱动,深度学习的应用潜力使其成为医学图像分割算法的主要选择。目前,在各种医学分割任务上,基于深度学习的自动分割算法取得
学位
视频目标跟踪技术能够根据初始帧给定的目标信息,在后续视频帧中得到该目标的运动参数。其在精确制导、智能导航等诸多领域有着广泛的应用前景。但实际的跟踪过程中存在各种复杂的情况,以至于视频目标跟踪算法要面对较多的挑战。本文主要针对相关滤波跟踪算法在目标遮挡、背景杂乱、快速运动等挑战中出现的响应图的多峰值的问题,基于多峰检测技术对相关滤波跟踪算法展开研究。本文开展的主要工作如下:第一,针对目标遮挡与目标形
学位
影响最大化是社会网分析的一个重要研究方向,在广告营销,舆情控制等领域具有广泛应用,影响最大化方法旨在寻找一组具有较高影响力的初始种子节点,最大化传播和扩散节点的影响范围。目前主要的影响最大化方法主要是针对同质社会网,同质社会网只是现实世界同类对象与对象之间关系的一种简述,并不能真正的表达现实社会中多种对象类型之间的社会关系。异质社会网中多种对象类型,多种对象间关系类型蕴含着丰富的结构和语义信息,有
学位
社交网络的发展为信息的快速传播带来了新的潜力,而确定网络中具有影响力的节点被视为这种潜力能够付诸行动的关键因素,影响力最大化的问题也由此被提出。影响力最大化问题旨在从给定的网络中找到固定大小的种子集,再经过特定的传播模型,使最终的信息扩散范围达到最大。正因为其在商业领域的巨大应用潜力,影响力最大化问题受到了广大研究者们的青睐。目前关于影响力最大化问题的研究大多都集中在同质信息网络,忽视了不同类型节
学位
信息时代的浪潮不断推进,但空间数据的指数级增长与海量数据的处理能力不匹配,由此空间数据挖掘应运而生。空间co-location模式挖掘能发现空间中频繁关联的特征,在空间数据领域得到广泛关注。本文研究的空间co-location主导特征模式挖掘方法,能够发掘不同重要性的空间特征,为空间数据分析及决策提供支持。在空间co-location模式的主导特征挖掘中,特征实例的空间分布状态是衡量模式中特征主导
学位
随着互联网上的数据海量增长,信息过载严重阻碍了人类社会的发展,推荐系统应运而生,它通过过滤、筛选匹配等手段,以解决信息过载的问题。传统的推荐系统核心问题是根据用户的历史反馈对用户和项目之间的交互进行建模,但这种建模的方式是静态的,只能捕获用户的共性偏好。在现实生活中,用户的习惯往往是序列化的行为,而不是独立的交互。此外,用户的偏好和物品的流行程度也会动态变化。不同的上下文通常会导致不同的用户项目交
学位
当今的大数据时代下,在数据挖掘、机器学习、图像、文本等领域中都存在类不平衡问题,类不平衡问题一般指不同类别之间样本数量的分布不平衡。基于机器学习的分类算法处理普通的平衡的数据集时较为有效,但数据集存在类不平衡问题时,会产生类别重叠、样本量小、边界模糊和小分裂群等问题,这将影响后续分类器的学习,导致其性能低下。目前解决类不平衡问题的方法可归纳为三类,数据级方法、算法级方法和集成方法。数据级的方法是针
学位
随着后基因组计划的进行,以及高通量生物测序技术的蓬勃发展,推动生物数据呈现出指数级的增长,生物计算已经渗透到了生物学的各个领域,以蛋白质的琥珀酰化为例,判断蛋白质序列中的哪些赖氨酸残基发生琥珀酰化修饰,是蛋白质功能研究中一项非常重要的工作。通过传统的方式来处理这种问题主要通过质谱分析的方法,这种方法会耗费过长的时间周期,以及巨大的人力财力,因此近年来开发了多种基于计算的方法。本文从蛋白质序列出发,
学位
随着在线社交平台飞速的发展,社交媒体成为人们获取信息的主要来源,在线营销成为主流的营销方式。大量商家将自己的产品在网络发布,通过社交网络进行病毒式营销。营销的关键在寻找具有影响力的种子用户,通过种子用户的口碑传播实现最大化影响范围,提升营销效果。为了找到符合要求的种子用户,影响力最大化问题被提出,并受到学界广泛的研究。传统的影响力最大化问题往往只关注影响范围,忽略了营销中的商业因素。真实的病毒式营
学位