论文部分内容阅读
锂离子电池以其高能量密度、高电压、无记忆效应、低自放电率等优点已广泛应用于笔记本电脑、手机、数码相机等小型便携式电器和航空航天领域,并逐步走向电动汽车领域。然而,锂离子电池特别是电动汽车用锂电池开发面临的安全性问题有待进一步解决。为了解决电池安全问题,有必要对电池的热效应进行分析。本文采用电化学-量热联用技术系统地研究以LiFePO4和LiMn2O4为正极材料的锂离子电池在不同温度和倍率下充放电过程中的热电化学行为,为电池热管理提供了基础数据,为全面评价电池材料的热、电性能提供了一种新的手段。同时,建立了锂离子电池的电-热耦合模型,应用有限元法预测了电池内部的温度分布。构建了锂离子电池体系中电极材料的晶体结构模型,应用第一性原理预测了电池的平均电压及正、负极材料的热力学性质,对于电池结构设计的优化及安全性能的提高具有非常重要的意义。本文运用热电化学方法和计算机模拟技术分别从宏观和微观角度对锂离子电池及其电极材料的结构和性能等若干问题进行了研究,获得了以下三个方面的研究结果:1.采用八通道等温微量量热仪与蓝电电池测试系统联用技术,测量分别以LiFePO4和LiMn2O4为正极材料的锂离子电池的电学特性、热学特性与温度的关系,进一步开展了正极材料的电、热性能评价。LiFePO4研究结果表明:温度和充放电倍率是影响电池比容量和发热量的重要因素,随着充放电倍率和温度的增加,比容量减小而发热量增大。在低倍率(O.1C.0.2C)下,电池极化较小,可逆性较好,电池的循环产热来自于可逆热和不可逆热共同作用。而在高倍率(0.5C、1.0C)下,不可逆热远远大于可逆热而处于主导地位,且随着温度的升高,放热效应更显著。通过热电化学研究,获得了电池充放电过程中的一系列热力学参数(化学反应焓变△rHm、化学反应熵变△rSm、化学反应吉布斯自由能变△rGm),该热力学参数在低倍率(O.1C和0.2C)下受温度影响较小;而在高倍率(0.5C和1.0C)下,随着温度的升高,△rHm显著增加。在低倍率(0.1C和0.2C)下,与正极材料LiFePO4相比,LiMn2O4的△rSm更小,其可逆性更好,循环性能更优。2.基于热传导理论建立了锂离子电池电-热耦合模型,采用有限元ANSYS模拟了LiFePO4锂离子电池在不同环境温度和充放电倍率下的稳态温度场。同时采用热电偶监测电池内部温度变化,对电池模型进行验证。结果表明:锂离子电池充放电过程中,电池内部的最高温度均出现在负极层与隔膜层之间,即电池内部偏中心位置。在相同充放电倍率条件下,环境温度越高,电池内部最高温度和表面温度之间的温差越大,电池内部温度场分布均匀性越差。在相同环境温度下,充放电倍率越大,电池内部温度场分布的均匀性越差。采用热电偶测量到的电池内部温度值与模型计算结果基本吻合,验证了本电-热耦合模型的可靠性。3.采用第一性原理的超软赝势平面波法,结合广义梯度近似(GGA)的PW91算法,计算了锂离子电池电极材料(LiFePO4. Li)的电子结构、热力学性质及LiFePO4体系的平均电压。结果表明:锂离子电池LiFePO4/Li的平均电压为3.22V,和实验值(3.40V)基本一致。正极材料LiFePO4和负极材料Li的熵S和焓H均随温度升高而增大,而吉布斯自由能G随温度升高而减小,这与热力学规律相符合。本研究获得了锂离子电池正极材料LiFePO4和负极材料Li的微观结构及热力学性质,可为锂离子电池的实际应用提供理论指导。