论文部分内容阅读
能源是人类社会进步最为重要的基础,是社会经济发展的基本动力之一。由于人类对化石能源过度使用,不仅对人类赖以生存的环境带来严重的污染,并且由于这种能源的逐渐匮乏,成为人类未来社会发展的潜在危机。因此,寻找和开发适合我国国情的可再生新型能源及石油替代品迫在眉睫。我国是农业大国,生物质资源非常丰富。但是由于没有先进、高效和能进入市场的利用技术,每年有巨量的废弃生物质而被白白废弃,因此能否找到一种新的技术,将每年巨量浪费的废弃生物质经济、方便地转化成可进入市场并且销售良好的生物燃油商品,具有重大经济意义、社会现实意义和生态环保意义。本文在国家“863”能源技术主题后备能源领域项目“集成式生物质多重闪速热解液化生产生物燃油新技术”项目的依托下,对转锥式生物质闪速热解液化装置反应器的设计理论进行了深入的研究,建立了热载体在反应器内部的空间动力学模型,推导出热载体的空间运动状态方程,转锥的最小锥角方程,并对转锥的强度计算方法、生产能力计算方法及功率设计方法进行了推算。从而建立了热解反应器的基本设计理论。结合有限元和模糊优化理论,提出了基于模糊优化的转锥有限元设计方法,所采用的模糊有限元方法能够充分体现问题的模糊性和工程结构的实际性,从而为转锥的结构设计和优化提供了重要理论依据。应用ADAMS软件对热解反应器进行了动力学仿真,建立了旋转锥和热载体计算机仿真模型。随后进行了不同的转锥锥角和转锥转速的运动仿真,找到了转锥锥角、固体滞留期和转锥转速间的最佳匹配关系。应用以上的理论、方法和仿真结果,自主研制了ZKR-200A型生物质闪速热解液化制油装置,并进行了实车实验。对4种常见的生物质进行热解液化实验,对所得到的生物质热解油进行了组分分析,得到了该装置生物质的加工能力的生物质能量转化率。通过以上的研究和实验为我国研制自己的、具有自主产权的先进的转锥式生物质闪速热解液化装置,提供了重要基础理论、设计方法和参考依据。