基于非局域非线性介质的空间光孤子的传输及其特性研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:zhang19890922
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
孤子是最古老的非线性现象之一,从Russell发现孤立波至今已有一百多年的历史。光孤子根据内在形成机制的不同可分为时间光孤子和空间光孤子。时间光孤子是光纤中的超短脉冲包络的色散效应和非线性效应精准平衡时,在时域中表现为脉冲包络不随着传播距离的变化而收缩或者展宽,而是保持波形不变的稳定传输的现象。空间光孤子则是当入射光在介质中传输时,光束的衍射效应和介质的非线性效应(即自聚焦效应)精准平衡时,在空间中表现为入射光束在垂直于传播方向的横截面上,光束的形状和光强分布都不随着传播距离的变化而变化,这一现象称为空间光孤子。由于光克尔效应的存在,空间光孤子在1+2维介质中传播时会聚焦于介质的中的一点,介质的非局域性可以抑制这种聚焦,从而支持光孤子在1+2维介质中的稳定传输。携带轨道角动量的空间光孤子因为其会产生旋转效应和独特的螺旋状相位结构,在全光通信领域和量子通信领域有着广泛的研究价值。又因其与微粒相互作用时会产生扭矩和辐射力等机械效应,在全光控制领域有着潜在的应用价值。本文从非局域非线性介质中的旋转椭圆光孤子出发,运用解析方法(主要是变分法)得出了旋转椭圆光孤子的孤子解;并通过Matlab运用数值模拟的方法模拟出一种新型的旋转sine型椭圆光孤子,命名其为SSES,并对其传输特性展开研究,其主要结论如下:1.通过分析无初始啁啾的高斯脉冲光束分别经正色散介质和反常色散介质传输,对比初始为线性正啁啾和线性负啁啾的高斯脉冲的光强分布和频谱,得出无初始啁啾的高斯脉冲经正色散介质传输会携带等效的正啁啾,经反常色散介质传输会携带等效的负啁啾。2.通过麦克斯韦方程组推导出非局域介质中的非线性薛定谔方程,并得出满足此方程的光束在传播过程中能量和动量是守恒的。在铅玻璃中,使用变分法推导出椭圆空间光孤子的变分解,并且指出只有在各项异性介质中椭圆光孤子才能稳定传输。3.通过分布傅里叶算法,我们模拟出一种携带sine项的旋转椭圆光孤子,并将其命名为SSES,我们通过对其步长的设置来研究其传输特性,发现SSES在传播过程中能保持形状不变的稳定的“旋转”,并研究了拓扑荷和椭圆率对其传输特性的影响,发现不论是随着拓扑荷还是椭圆率的增加,SESS的稳定性都会随之降低。并研究了随着椭圆率和拓扑荷的变化,SESS光束的中心奇异点、临界功率和轨道角动量之间的变化关系。
其他文献
如今社会能源消耗量巨大,废热利用空间很大,热电材料和热电器件在废热回收发电方面的应用前景巨大,是国际上的研究热点之一。提升热电材料的综合性能是一切应用的基础。本论文以n型Bi2Te3基热电材料为研究对象,采用高温熔炼法、放电等离子烧结(SPS)等工艺制备了(Bi2Te2.7Se0.3)1-x(MgB2)x、(Bi2Te2.7Se0.3)1-xBx两个系列的样品;采用溶液法合成了Bi2Te2.7Se
随着当今世界科学技术的不断发展,人们对能源的需求逐年增高。一方面,能源的消耗使传统化石能源储量逐渐下降;另一方面,石油能源消耗带来的环境污染问题日趋严重。热电器件以体积灵巧、重量轻、使用过程无噪音、无机械运动、无污染、易于控制以及对热能独特的利用优势而备受关注。本文以高温半哈斯勒合金为研究对象,实验研究了Ti、Hf、Ta元素共掺杂p型NbFeSb和V、Nb、Ta、Zr、Hf单掺杂n型TiCoSb对
粘弹性有机材料是生活中一类重要的功能软物质,而具有光电功能的粘弹性材料因为兼具光电特性和粘弹性更是受到了人们的广泛关注。具有光电功能的粘弹性材料可分为小分子和高分子两种类型,均具有π-共轭结构,是一类新型的光电功能材料。近年来,兼具粘弹性与光电功能的有机小分子和高分子正处于快速发展中,但依旧存在一些问题。比如,(1)小分子由于其颜色可调性而在多方面得到应用,但却往往忽视了发光颜色质量不佳的问题。(
在能源紧缺的大背景下,提高能源的利用效率意义重大。热电材料通过内部载流子的运动,可以实现热能和电能之间的直接转换,既可以有效的回收、再利用低质量的废热,又不产生任何额外的噪音和碳排放,因而具有可观的应用前景。其中,有机热电材料,尤其是单壁碳纳米管(SWCNTs)与有机小分子(OSMs)复合热电材料(SWCNT/OSM),因其具有价格低廉、低毒、灵活轻便等特点,在热电领域中举足轻重。但是,目前有机热
热电材料利用固体内部载流子运动来实现热能与电能之间的相互转化,是绿色能源材料。有机/无机复合热电材料结合有机材料的低热导率和无机材料的高电导率及塞贝克系数的优点,成为近期热电材料研究的热点。但是对聚合物的分子结构以及有机、无机各组分之间的相互作用对复合热电材料的热电性能影响的探索尚不完善。近来,因为柔性热电器件具有成本低、抗弯折、耐用性强和适用领域广的特点,也逐渐引起了研究者的关注。基于以上问题,
NO2作为一种有毒有害气体,对环境和人类身体健康有着巨大危害,因此需要对其进行有效的监测。金属氧化物半导体(MOS)气敏传感器具有灵敏度高、结构简单、成本低廉等优点,因此被广泛应用于日常生产、生活中。金属氧化物WO3会对NO2气体表现出高灵敏度和高选择性,因而成为NO2气敏传感器中较具研究价值与潜力的气敏材料。本文中,我们在不同工艺条件下合成了WO3·xH2O、WO3/GO复合材料,构筑了相应的气
MgAgSb是目前报道的在400-500 K之间具有最大热电优值的近室温热电材料,但由于其高含量的Mg和Sb易挥发,熔炼时产物的成分控制及性能调控较为困难。本文采用高频熔炼与等离子放电烧结相结合的方式成功制备了MgAgSb块体材料。为进一步提高MgAgSb的热电优值,选择在Mg位掺杂Zn元素,来降低其热导率。在此基础上,选择在Ag位掺杂Cd来提高其载流子浓度,从而提高热电优值。并探究了在不同烧结温
近年来,新型的纳米表面材料成为了人们研究的热点。在纳米科学飞速发展的今天,传统摩擦学这一适用于宏观摩擦现象的学科渐渐暴露出一定的局限性,人们迫切的需要新的理论突破以指导纳米尺度下的摩擦性能的调控。在前期对石墨烯嵌入式碳膜的研究中,它的摩擦学特性展现出了十分广阔的探索空间。但是,电子对碳膜摩擦性能影响一直被忽略。此外,量子效应对石墨烯嵌入式碳膜摩擦学特性的作用也并不明晰。为此,本论文将从“摩擦与结构
现代材料学中,低维纳米材料被广泛应用在集成光路以及光电器件中。最近几年,以过渡金属二硫化物(TMDs)为代表的二维(2D)材料及其制备的器件显示出了非常优异的性能和广泛的应用前景,因此2D材料迅速成为研究的热点领域。尽管如此,从器件结构的设计优化到材料器件的制备工艺依然存在一些问题,而进一步设计具有高量子效率的过渡金属二硫化物2D材料器件也是学术研究和推进其产业应用的重要方向之一。设计这一类器件时
堇青石陶瓷件因其热膨胀系数低、高熔点、机械性能良好等优点,广泛应用于汽车尾气净化器催化载体领域。随着更加严苛的排放标准的出台,对堇青石陶瓷件的性能提出了更高的要求。因为陶瓷材料难加工的性质,传统陶瓷制备方法制备的陶瓷件,越来越难以满足需求。本文初步研究使用DLP光固化增材制造技术制备了堇青石陶瓷件,与传统陶瓷制备方法相比具有成形精度高、生产周期短、可成形任意形状等优点。初步研究了可光固化的堇青石陶