石墨烯的电场效应及不同浓度的氢吸咐研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:Hmilts
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自2004年在实验中成功制备出石墨烯以来,由于其具有特殊的物理和化学性质,因此在复合材料、电子元件和晶体管、传感器、太阳能电池、吸附剂等方面都有广泛的应用前景。  石墨烯是碳原子以六边形形式排列的超薄片状纳米材料,其厚度仅有碳原子大小,是到现阶段为止世界上已知的最薄、最坚硬的物质,它接近全透明,且电阻率与其他材料相比较低,电子迁移速度也相对较快。本文主要是利用基于密度泛函理论的第一性原理计算方法的CASTEP软件包,采用模守恒赝势和超胞模型,系统地研究石墨烯纳米带的电场效应以及石墨烯吸附不同浓度的氢原子的色散曲线和声子振动谱。具体完成的工作如下:  首先,利用第一性原理计算含有三个或四个Z型碳链的超窄石墨烯纳米带的电场效应,其导电机制随所加的垂直电场的改变而变化。在电场效应下,超窄石墨烯纳米带的最高价带与宽型石墨烯纳米带类似,而最低导带却有两种情况:自旋退化和自旋劈裂,这两种最低导带在量子空间是独立的。随着电场强度的增加,导电机制由最低导带的自旋退化转化成自旋劈裂。利用LDA和GGA泛函可以得到相同的理论结果,在实际计算中LDA和GGA通常都低估带隙,而利用GGA计算得到的带隙比LDA大。  其次,利用密度泛函微扰理论计算不同氢原子覆盖度下石墨烯的声子色散曲线和声子振动谱。根据声子色散曲线以及声子态密度的特征频率可以识别氢原子的覆盖度。由氢原子的化学性质可知,氢原子在石墨烯上最稳定的吸附位是碳原子正上方,即顶位。随着氢原子覆盖度的降低,高频特征频率值逐渐增大,振动强度逐渐减小,最后趋于无限大石墨烯吸附单个氢原子的情形。当覆盖度为50%时,由于氢原子间的相互作用强,使石墨烯的晶格结构发生大的形变,破坏了原有对称性,改变了石墨烯的本征振动模式,出现了两支高频特征振动频率,这是超高覆盖度的特征。当覆盖度降低时,石墨烯自身结构没有大的形变,本征对称性基本保持不变,于是双特征频率恢复简并,双特征峰变成单特征峰。这一理论预言可以帮助指导实验中对石墨烯上氢原子覆盖度的测量和表征。  最后,在附录部分我们基于第一性原理,研究了卤素原子轰击萘分子开环裂解成链、以及负电和溶液效应的反应动力学,分析了以产物的碳链长度、结合能、存在时间和燃烧热为参数的成本模型。结果表明:(1)萘分子和卤素原子之间的电荷转移是萘环开环裂解的物理原因;(2)对于不同的轰击位置,萘分子的碳碳键可以选择性断裂成不同长度的碳链,生成的碳链可以进一步通过加氢形成液体燃料;(3)负电效应可以降低成本,乙醚溶液效应对成本的影响是双重的。
其他文献
活动星系核在星系演化、宇宙大尺度结构形成的过程中起着重要作用。已经确立的星系中心黑洞质量和核球恒星速度弥散之间的关系强烈地暗示活动星系核和星系是共同演化的。我们首次利用IRAS红外巡天的中远红外色指数α(60,25)作为衡量活动星系核及其宿主星系星暴相对活动性的“指示剂”,在1型活动星系核中研究了爱丁顿比(L/LEdd)和宿主星系星族成分之间的演化联系。我们的样本包括25个Sloan Digita
表面活性剂系统是软凝聚态物理研究的的重要对象之一。以表面活性剂为代表的双件分子,大量的存在于化学利乍物体系中。这类分子一端亲水一端亲油的特性使其能够在液体系统中引
近年来,简单原子分子系统的弱束缚基态研究引起了人们很大的兴趣。一方面是因为希望在真实原子分子系统中找到halo态或Efimov态;另一方面与实现Bose-Einstein凝聚(BEC)有关。
在现代微波、毫米波通信系统中,低相噪频率源对系统性能起着非常关键的作用,特别是在军事国防上,这种关键的作用更加明显,为此在本论文中,就如何实现X波段频率源的低相噪性能,给出
近年来材料界面的性质一直是物理、化学、材料等学科的研究热点,由于界面材料电子结构的不连续性,带来了一些与众不同新奇物性。La Al O3/Sr Ti O3极性-非极性氧化物界面自从其被发现存在界面二维电子气之后就吸引了众多关注,体系界面处高迁移率的二维电子气以及磁性、超导等丰富的物理性质,使其有望成为下一代新型氧化物电子器件材料。本论文以La Al O3/Sr Ti O3的现有研究成果为背景,为了