【摘 要】
:
电力行业是我国国民经济发展的基石,而其中火力发电占总发电量的绝大部分。但在国家全面倡导节能减排的大环境下,火力发电过程中会生成以NOx为主的污染物,对环境污染最大,且最难以处理。因此建立火电厂的NOx排放模型能够促使企业严格执行环保政策,,实现经济高效可持续发展。在已有的NOx排放建案例中,以支持向量机为代表的一系列NOx排放建模方法取得了优异的建模效果。支持向量机在统计学习理论基础上发展的一种机
论文部分内容阅读
电力行业是我国国民经济发展的基石,而其中火力发电占总发电量的绝大部分。但在国家全面倡导节能减排的大环境下,火力发电过程中会生成以NOx为主的污染物,对环境污染最大,且最难以处理。因此建立火电厂的NOx排放模型能够促使企业严格执行环保政策,,实现经济高效可持续发展。在已有的NOx排放建案例中,以支持向量机为代表的一系列NOx排放建模方法取得了优异的建模效果。支持向量机在统计学习理论基础上发展的一种机器学习算法,具有理论完备、适应性强等优点,因此在深度学习和人工智能高速发展的今天仍保持较高的活跃度。考虑到从火电厂DCS系统采集的数据过于庞大,而串行机制的支持向量机算法仍无法胜任大规模数据的建模任务,因此本文对支持向量机的并行化算法进行了深入的研究。其中,基于大数据平台的并行化技术备受关注,如,Hadoop和Apache Spark是其中最具代表性的大数据处理平台。但由于Hadoop计算延迟较高,无法胜任实时、快速和迭代的计算任务,因此采用了具有高效性、易用性、通用性的Apache Spark对算法进行并行化改进。综上,本文针对火电厂中的大规模数据NOx排放建模问题,对传统支持向量回归机进行改进,并基于Apache Spark将其并行化实现,进一步提高其处理大规模数据的能力。论文的主要工作和研究成果如下:(1)通过构造支持向量回归机权系数向量的可调预定义值向量,并利用模糊C均值算法确定预定义值向量中的基向量,提出了一种半参数支持向量回归机。并给出了基于迭代重加权最小二乘的半参数支持向量回归机求解策略。通过数值实例实验证明了半参数支持向量回归机算法的有效性,该算法可在不损失精度的情况下,降低计算复杂度且复杂度可控;(2)为进一步提高半参数支持向量回归机算法处理大规模数据的能力,基于Apache Spark和数据集划分的思想,给出了半参数支持向量回归机基于Apache Spark的并行化实现。(3)以某电厂600MW锅炉为研究对象,利用本文所提算法,成功建立了其NOx排放模型。本文首先利用变量重要性投影进行变量选择,确定输入变量;接着对确定的变量利用Pearson算法进行时延分析。最终利用所提算法建立了火电厂NOx排放模型。实验结果表明并行机制的半参数支持向量回归机建模效率高,特别是在数据量增大时,本文建立的模型其优势更为显著。
其他文献
随着移动业务的快速发展,计算、存储和电池资源有限的用户设备已经无法满足高复杂度和高能耗服务的需求。移动边缘计算(Mobile Edge Computing,MEC)通过将计算、存储和服务功能迁移到网络边缘,使得用户设备可以将任务卸载到边缘服务器,从而减少用户设备任务的完成时延与能耗。如何进行高效的卸载决策和资源分配以降低任务的完成时延与能耗已成为重要的研究课题。本文对异构蜂窝网络中用户任务卸载以及
随着移动网络技术的发展和广泛应用,无线网络不仅需要满足海量移动数据的使用以及高速率,同时还要提高服务质量,因此网络的高效管控是一个巨大的难题。传统网络的管控需要大量的人力物力,且效率也是一个问题。数字孪生技术使物理空间与虚拟空间相互交互,综合利用感知、运算、模型等技术,并利用软件定义,对物理空间实现了描述、诊断、预测、决策。可以为现代网络的管控提供的强大的技术支持。针对这些问题,本文深入研究了5G
作为应对移动互联网和海量物联网日益增长的接入需求最具前途的技术之一,非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术近年来受到了积极的关注。与传统的正交多址接入(Orthogonal Multiple Access,OMA)技术相比,NOMA系统具有更高的频谱效率、更快的传输速率以及保障更多的用户接入。NOMA主动引入用户间的干扰,其高频谱效率是通过增加
智能反射面(intelligent reflecting surface,IRS)是一种新兴的,很有前途的B5G(6G)无线通信技术。它是由大量无源的或者有源的反射元件组成的大型二维阵列,可以通过改变信号的相位和幅度改善信号传输的环境,减少信道干扰。毫米波属于甚高频段,单跳通信距离较短,因此多跳的接力通信是毫米波通信的研究前景。IRS可以有效地控制信号的传递途径,包括相位,振幅,频率甚至偏振,而无
大数据时代,充足的训练数据给机器学习带来了巨大的性能提升。大量的数据也意味着需要大量的人工标注,然而人工标注往往耗时耗力,这催生了迁移学习(Transfer learning,简称TL)的发展。迁移学习旨在借助相关源域的知识辅助目标域学习,以解决目标域数据或标记稀缺的问题。域适应(Domain Adaptation,简称DA)学习是迁移学习中的重要研究方向。域适应方法通常利用基于距离或者对抗的方式
雾霾天气下,由于空气中存在大量漂浮着的粒子,光线传播过程中与这些悬浮粒子相互作用,使得光线发生散射,最终到达成像设备的场景光信息受损。所以拍摄得到的图像存在对比度较低、清晰度低、细节丢失等问题,影响后续对图像的进一步处理应用。因此,对有雾图像进行去雾工作,使其能够应用于高级别的图像处理任务。本文基于深度学习对单幅图像去雾算法进行了研究,主要工作如下:(1)针对基于深度学习的非端到端图像去雾算法对模
随着社会经济的不断发展和人民消费水平的提升,消费者对物质生活水平的需求不再仅仅体现在数量上,同时对商品的质量也有了更高的要求。供应链溯源技术是保障商品质量的首要方案,但在传统中心化存储的供应链溯源系统中存在信息孤岛、恶意企业对溯源信息进行修改不易被察觉和溯源难的问题。区块链具有去中心化、不可篡改性和可追溯性等特点,这些特点使其在商品溯源方面具有不可替代的优势。然而由于供应链溯源管理的参与方较多且存
随着移动通信与多媒体技术的发展,多媒体服务正在从传统单一、平面、应答式的内容服务,向沉浸、立体、交互式的技能服务演进。触觉互联网在传统多媒体通信的基础上,加入新的触觉类媒体,实现了物体感知模式的进化,能够在远端敏锐地感知细微的变化,提升用户服务体验。然而,触觉互联网对通信环境提出了更高的要求,网络延迟必须低至毫秒级别,网络通信可靠性必须至少高达99.9999%。如何保障超可靠低时延通信成了触觉互联
过去几十年间,量子纠缠和Bell非局域性这种对称量子关联,引起了人们的广泛关注,并取得了丰硕的研究成果。然而,直到最近几年,量子导引这种非对称量子关联才开始进入人们的视野。它是一种介于量子纠缠和Bell的非局域性之间的量子关联形式。由于其独特的不对称特性,使得它在量子通信、量子计算和量子密码等许多领域发挥着不可替代的作用。然而,在量子领域,一个不可避免的问题是,量子系统会与周围环境彼此耦合,导致量
随着移动通信网络和各类智能传感器的飞速发展,人们对沉浸式交互体验的需求日益增长。触觉作为重要感知模态,是提升用户整体沉浸感、流畅感、参与感的关键。然而,传统的音视频传输方案无法应对突变的触觉信号和其超高的低延迟要求。因此,如何设计一个通用的多模态传输方案,能自适应传输过程中环境、信号的实时变化,实现对数据流的实时控制以适应各种远程操作场景是亟待解决的问题。此外,参考多模态深度学习领域研究成果,将多