Sm-Mg-Ni系贮氢合金的相结构与储氢性能

来源 :燕山大学 | 被引量 : 0次 | 上传用户:luck88888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新型Sm-Mg-Ni系贮氢合金因为具有较大的贮氢容量、吸放氢循环稳定性和较高的吸氢平台而得到了众多研究人员的广泛关注,但是目前对于高压型Sm-Mg-Ni系合金的研究进展报道少之又少,提高贮氢合金的吸/放氢循环稳定性不仅有利于合金贮氢性能的提升,也会显著改善贮氢材料的应用范围,从而推动贮氢材料快速走向实际生产和应用。本文通过粉末烧结法制备了AB3和A2B7型Sm-Mg-Ni基贮氢合金,系统研究了两种堆垛类型合金的相结构以及储氢特性,并通过感应熔炼法进一步获得了具有A5B19型相结构的Sm-Mg-Ni-Co-Al基贮氢合金,并对合金的相结构、储氢性能和吸/放氢循环等性能进行了研究。通过粉末烧结法制备了PuNi3型Sm0.68Mg0.32Ni2.53和Gd2Co7型Sm0.80Mg0.20Ni2.95超堆垛型贮氢合金。研究发现,两种单相合金在298 K、3 MPa的H2氛围下均在第一圈达到完全活化,Pu Ni3型Sm0.68Mg0.32Ni2.53经25 min可吸收1.41 wt.%H2,Gd2Co7型Sm0.80Mg0.20Ni2.95合金经35 min可吸收1.53 wt.%的H2;在第五圈吸放氢过程中,两种单相合金均可在4 min内达到最大吸氢量。两种单相合金在经历20圈吸放氢循环之后合金的吸氢容量保持率分别为96.2%和99.2%。Gd2Co7型Sm0.80Mg0.20Ni2.95合金在吸/放氢过程中的反应焓变分别为-18.86 k J/mol和23.66 k J/mol,远远小于单相Pu Ni3型Sm0.68Mg0.32Ni2.53合金的吸/放氢反应过程焓变,分别为-10.92 k J/mol和6.02k J/mol。通过感应熔炼法结合退火处理得到了Sm0.8Mg0.2Ni3.7Co0.11Al0.06合金,这种合金不但具有优良的活化性能以及较好的贮氢性能,还具有优良的吸放氢循环稳定性。研究发现,合金中主要含有Ce5Co19、Ce2Ni7以及Gd2Co7三种相结构,在298 K、8 MPa条件下经10 min便能达到活化状态,活化最大吸氢量为1.60 wt.%;经过25周吸放氢循环后,合金的吸氢速率明显增快,同样条件下只需1.5 min便能达到1.29 wt.%的吸氢量;合金在经历50周吸/放氢循环后,合金的吸氢容量保持率仍然可以达到87.8%。
其他文献
高氮奥氏体不锈钢是以氮和锰替代了传统AISI300系不锈钢中昂贵的镍,不仅具有优异的力学性能,而且还有着良好的生物相容性和价格优势。这类钢在医疗、汽车、化工等领域应用前景十分广阔。金属零部件最终的各种表面加工工艺,例如切削加工、抛丸、滚压等,都会引入应变层,产生加工硬化和残余应力。这些都会影响金属的力学和化学性能。而这些表面加工工艺对高氮奥氏体不锈钢有什么影响,目前尚不明确。本文以典型的高氮奥氏体
轧机在国内担负着近10亿吨钢材生产任务。工程界结合其重载、高速和高精度特性对振动问题进行了长期研究,取得了诸多关于致振机理和振动控制的研究成果。然而,轧机作为复杂机械系统,实际生产中表现出的非线性振动现象仍不断凸显,如颤振成为长期困扰轧机运行的幽灵般难题,导致轧机规定能力大幅降低。其中,冷轧板带在轧制过程中表出现的非线性振动现象,是研究轧制系统的振动问题不可或缺的组成部分。本文基于弹性理论及哈密顿
随着经济和技术的快速发展,人们从未停下探索海洋的脚步。超级奥氏体不锈钢具有优异的耐腐蚀性能和良好的力学性能,在海洋资源开发中受到了广泛应用,其中,在一些海洋装备的运动系统中服役时,如船舶的动力装置、海水液压传动装置和水下作业机器臂等,腐蚀与磨损是不可避免的。因此,研究材料在海洋环境中的腐蚀磨损行为至关重要。本文以两种超级奥氏体不锈钢为研究对象,高Mn含量并加入Ce元素的标记为654-1,低Mn含量
铁素体马氏体钢在强辐照环境下具有优异的几何稳定性,耐腐蚀性能以及抗辐照肿胀等特性,可以作为核反应堆的重要候选材料之一。铁素体马氏体钢中含有的主要元素为Fe和Cr,还有少量的Si、C、N等元素。同时FeCr合金又是重要的不锈钢材料,其应用不仅局限于核电站的建设,更是涉及到日常生活的方方面面。FeCr合金通常具有成分无序性,以及复杂的磁性结构,并且材料性能与腐蚀性的研究还主要依赖于实验方法,这使得其研
在众多表面处理工艺中,喷丸表面处理技术非常成熟,可以使金属表面物理性能得到提高。从力学性质来看,金属得到强化的原因是金属产生了残余应力。从微观角度来看,主要是晶粒尺寸、位错、相变和晶胞等变化使得金属强化。本文主要是对喷丸处理中各种因素对残余应力和晶粒尺寸的影响,以及残余应力与晶粒尺寸的关系进行研究。主要工作如下:为了研究喷丸表面处理强化的内在物理机制,建立了弹丸冲击力学模型。使用DYNA软件进行研
近年来电子工业的发展十分迅速,各类电子电器产品朝着轻、薄、小、快方向发展,也因此对压延铜箔的性能提出了更高的要求。普通多晶铜箔在导电、散热和信号传输等性能上越来越达不到锂电池和微型电子等行业要求。而单晶铜的塑性、导电性和耐弯折性等多项性能优异,为了研制高质量高性能的压延铜箔,非常有必要研究单晶铜轧制工艺。本文基于热型连铸单晶铜和普通多晶铜,利用拉伸、显微硬度和金相实验研究了单晶铜和多晶铜轧制、回复
双相不锈钢的显微组织由奥氏体相和铁素体相组成,它兼具各自单相不锈钢的优点,有着优异的力学和化学性能,被广泛应用于工况恶劣的腐蚀环境中。然而,由于奥氏体相和铁素体相的晶体结构不同,在热加工时的变形机制、软化方式、变形抗力和塑性均存在差异,容易导致组织变形不协调,热加工性能较差,加工窗口相对较窄。工艺选择不当很容易产生缺陷,严重的会导致热轧边裂和热锻表面开裂。这些缺点阻碍了双相不锈钢的应用和发展。系统
形状记忆合金是近几十年发展起来的一种新型的智能材料,根据材料的不同主要分为三类,NiTi形状记忆合金最早的被发现并广泛应用于军事医疗等领域,而对于记忆合金的应用大多停留在通过对其本身的记忆特性的利用而实现简单的变形。手性超材料可在单向加载下实现多个维度上的变形,本文通过将记忆合金的记忆特性和手性超材料的变形特性相结合,组装一种智能可控的的变形结构。综合国内外学者的研究成果,研究不同手性胞元结构的变
我国国防、航空航天、船舶、电力等领域亟需大型高性能模锻件,然而,大型模锻件组织性能不均和材料利用率低的问题异常严峻,特别是截面形状呈“H”形的框类和壁板类模锻件,其材料利用率不足30%。大型模锻件的微观组织不均匀问题,表面上是变形温度场不均造成的,其本质原因在于锻件成形成性全流程形变储能调控不当,导致的微观组织不可控演变。因此本文采用低温小变形工艺,调控铝合金模锻件整体组织均匀性,并分析低温小变形
激光焊凭借其焊接热输入量小、深宽比大、焊缝强度高等优点被广泛应用于钛合金结构件焊接,但激光焊接的焊道凝固快,有时会产生气孔缺陷。尽管焊接标准对气孔大小、数量进行了严格限制,但气孔缺陷极易导致焊接板的提前失效。为此,本文以TA2纯钛中厚板激光焊接接头为研究对象,研究了纯钛板焊接接头不同区域的微观组织、拉伸、断裂等力学性能的差异,在传统断裂判据的基础上,引入SINTAP-FAD失效评定法,对含有气孔的