论文部分内容阅读
高能钝感是含能材料的发展方向,也是武器能源领域关注的热点问题。长期以来,人们改进含能材料的技术途径有两大类:一是寻找和合成新的化合物;二是在配方中加入相容性好的高能组分来提高含能材料的能量,同时,通过添加粘结剂、钝感剂来获得感度相对较低的混合药剂配方。无论采取何种途径获得新型高能化合物,其设计和合成都是根本所在,相关研究具有重要的理论意义和应用价值。硼由于具有高的燃烧热值,受到了人们的关注,但硼的反应需要外界供氧,而且此种材料的表面氧化膜在燃爆过程中有较强的阻碍作用,影响了其能量的释放。基于此问题,本文以设计兼具高热值、反应迅速、安全性好的含硼高能化合物为目标,利用密度泛函理论对硝基硼烷化合物的几何结构、成键特征、热力学稳定性以及光谱性质等进行理论研究。从理论上设计探索新型高能、钝感化合物,为新型高能钝感含能材料的研究提供理论支撑。论文主要研究内容如下:1在密度泛函理论在B3LYP/6-31+G*水平上,对硼氧基取代TNT苯环上氢原子所得化合物进行几何结构、热力学性质以及其前线轨道能级差ΔEgap和Wiberg键级进行了理论研究;2在密度泛函理论在B3LYP/6-31+G*水平上,对TNA的硼氧基取代衍生物的几何结构、热力学性质以及其前线轨道能级差ΔEgap和Wiberg键级进行了理论研究;3采用密度泛函理论在B3LYP/6-31+G*水平上,对TNP硼氧基取代物的键长,红外光谱振动,热力学性质以及前线轨道能级差ΔEgap和wiberg键级进行理论研究;4采用密度泛函理论在B3LYP/6-31+G*水平上,用原子化反应法对硼氢化合物B2H6硝基衍生物的稳定性、生成焓和爆热等参数进行了理论计算;5采用密度泛函理论在B3LYP/6-31+G*水平上,对硼氢化合物B4H2硝基衍生物的稳定性、生成焓和爆热等参数进行了理论计算;6采用密度泛函理论在B3LYP/6-31+G*水平上,对硼氢化合物B5H9硝基衍生物的稳定性、生成焓和爆热等参数进行了理论计算。理论计算结果表明:1 TNT硼氧基衍生物中硼氧键为三键,C-BO键的键级为0.86,C-NO2键的键级为0.90,C-BO键的键级相对最弱,可能是标题物的热解或起爆引发键;通过自然轨道分析得出TNT-(BO)2前线轨道能级差值ΔEgap大于TNT-BO,这表明TNT硼氧基衍生物稳定性随取代基数的增加而增强;通过爆热计算得知TNT硼氧基衍生物的爆热明显大于TNT,由此可推断,TNT硼氧基衍生物是一种潜在的高爆热钝感含能材料;2 TNA硼氧衍生物中硼氧键是典型三键;通过自然轨道分析在TNA硼氧衍生物中N-H键最弱,可能是标题物的热解或起爆引发键;并且随着取代基数目的增加,前线轨道能级差ΔEgap增大,表明化合物稳定性增强;通过爆热计算得知TNA硼氧基衍生物的爆热大于TNA,由此可推断,TNA硼氧基衍生物是一种潜在的高爆热钝感含能材料;3 TNP硼氧衍生物中硼氧键是典型三键;通过自然轨道分析可知,随着取代基数目的增加,TNP硼氧衍生物的前线轨道能级差ΔEgap增大,表明化合物的稳定性随取代基数目的增加而增大;TNP硼氧基衍生物的爆热比TNP爆热大,而且计算表明硼氧基取代苯环上氢原子后会使得化合物更加稳定,由此可推断,TNP硼氧基衍生物是一种潜在的高爆热钝感含能材料;4采用密度泛函理论研究结果表明,B2H6硝基衍生物的爆压、爆速随着硝基数的增加也在增加;自然轨道分析得知B2H2(NO2)4化合物的ΔEgap值为459.27 k J/mol,接近于TNT、TNA和TNP的硼氧基衍生物的ΔEgap值,说明在B2H6中即使硝基数增加到4个时,所得到的硝基硼烷也是相当稳定的,可以作为潜在的新型高能钝感含能材料使用;5采用密度泛函理论对B4H2硝基衍生物和TNT进行了研究比较,研究结果表明,标题物的理论密度、爆速和爆压略低,但是爆热比TNT大很多;自然轨道分析得知B4HNO2和B4(NO2)2没有B4H2稳定,即B4HNO2和B4(NO2)2的感度较大,在使用前可能需要经过降感处理;6通过自然轨道分析了B5H9硝基衍生物的ΔEgap值,发现其与TNT轨道能级差ΔEgap值相近,可以认为这些化合物稳定性与TNT稳定性相近;化合物中B-NO2键相对较弱,可能是标题物的热解或起爆引发键;化合物中随着硝基数的增加,化合物的爆速和爆压都在增大,最大爆速为6.98 km/s,最大爆压为19.87 Gpa,虽然比TNT低,但是最大爆热为1946.52 J/g,远大于TNT的爆热(1425.94 J/g)。