论文部分内容阅读
DNA甲基化作用是一种重要的表观遗传现象,可在不改变细胞DNA碱基序列的情况下调控细胞内的基因表达,它参与了胚胎发育、基因组印迹、细胞分化、X染色体失活和细胞记忆等诸多生物学过程。DNA甲基化既可遗传,也可发生逆转,而且存在特定的动态变化模式。“培矮64S”是一种重要的水稻光温敏核不育系,在超级稻等水稻育种工作中占有重要地位。随着水稻全基因组测序工作的完成以及后续的蛋白质组、表观基因组、基因组注释等工作的不断开展,目前对光温敏核不育水稻在细胞学、生理生化和分子生物学等方面的研究已取得了很大的进步,并且部分不育基因已被克隆并定位到相应的染色体上。鉴于光温敏核不育系水稻育性转换的遗传机制仍不十分明确,因此包括甲基化修饰在内的表观遗传学作用对水稻育性影响的研究已经开展。在本研究中我们通过分析培矮64S不育与可育株间基因组DNA甲基化水平的差异情况,并且推测了光温敏不育的育性转换机制与DNA甲基化之间可能的关系,主要结果如下:1、通过MSAP技术,研究了水稻光温敏核不育系培矮64S不育株、可育株减数分裂期幼穗DNA的甲基化差异,利用192对选扩引物组合在PAGE大板胶上共得到了27,417条带,其中不育株与可育株间的差异性条带数为1,215;挑取其中的346条差异带,经回收、克隆、转化和测序,通过Blast分析,在水稻数据库中找到了95对同源序列,其中10对为高度同源序列,涉及光合作用系统、线粒体呼吸传递链、细胞骨架和信号级联反应等过程。对blast得到的7对高度同源序列进行RT-PCR验证,结果表明,D2(光合系统II的核心肽链基因)、P700(光合作用中光合系统I的apoprotein A1关键基因)和Nad7(线粒体呼吸链的NADH脱氢酶的亚基)、VIP2、Cyt f、Ret和MTs等7个功能基因在不育系S中都有很高的表达量,而在可育系F中表达量较低。对比分析MSAP的甲基化图谱,发现这三个基因在可育系F中都出现了甲基化,它们都与光合作用或能量代谢有关。这说明功能基因D2、P700、Nad7、VIP2、Cyt f、Ret和MTs在可育系F中被甲基化,进而参与育性转换的调控之中。2、利用甲基化DNA免疫共沉淀高通量测序(MeDIP-sequencing)技术,分析了培矮64S全基因组水平DNA甲基化情况,对CpG Island、upstream2k、5’ UTR、 CDS、Intron、3’ UTR和downstream2k等功能元件上的甲基化分布进行了比较分析,结果表明不育株和可育株基因组的upstream2k和downstream2k元件上分布的reads最多,说明这两种功能元件的甲基化水平也高,相对来说3’UTR和5’UTR上甲基化水平最低;不育株与可育株在所有功能元件上都存在着甲基化的差异,其中CpG Island区域的reads平均覆盖深度(可代表该位点的甲基化水平)差异明显,不育株的甲基化水平低于可育株,基因元件Intragenic中甲基化水平也是不育株低于可育株;Peak统计发现upstream2k、downstream2k、Intron和CDS元件上的peak数较多,而5’ UTR和3’ UTR上peak分布最少,peak覆盖度的高低代表了该区域甲基化程度的差异;基于样品间peak覆盖度的差异比对不育株与可育株的6种基因元件,共找到1126个差异基因,以upstream2k和downstream2k上分布最多。另外,用GO和Pathway功能分析比较了不育株与可育株间的差异基因,探讨了与光温敏核不育育性转换可能相关的基因。目前,对于光温敏核不育水稻的育性遗传机制与基因组水平的DNA甲基化水平的关系尚未见有报道,我们通过MSAP和MeDIP技术,发现培矮64S不育株基因组DNA甲基化水平明显低于可育株,用MSAP方法得到95个差异基因,用MeDIP方法得到了1126个差异基因。这些结果,为我们进一步开展对光温敏核不育水稻育性遗传机理的后续研究提供了实验数据、奠定了工作基础。