论文部分内容阅读
无粘结后张法(UPT)现已被应用在弯曲的梁柱构件上,这些构件中的预应力筋在节点之间通常是连续的。现在对于连续构件的无粘结后张法预应力钢筋的研究十分有限。在混凝土连续梁的设计过程中,确定无粘结预应力钢筋的正常使用极限承载力十分关键。有关连续无粘结预应力钢筋的实验表明,在受弯极限状态下构件会出现弯矩重新分配。由于仅有的关于该类连续梁的实验都将重点放在极限承载能力的预测上,这些实验数据对于确定无粘结预应力钢筋正常使用极限承载力并无太大参考价值,数据也并未反应弯矩重分配、次弯矩和连续梁的受剪能力。这些现象对于估算无粘结后张法预应力钢筋的弯曲强度和裂缝开展十分重要。用后张法无粘结预应力筋张拉的两跨梁研究了结构的裂纹诊断。为了研究混凝土梁的开裂行为,16个全尺寸的梁加载到破坏,用来测量裂纹发展,裂缝间距和裂缝宽度,以及不同荷载水平下的应力变化规律。两跨梁有不同跨度,配筋率、混凝土的抗压强度和预应力张拉度。无粘结后张法(UPT)方法常用于连续的弯曲构件。根据试验结果,随着弯矩的增加,在非预应力纵向受拉钢筋屈服线性增加的同时,无粘结预应力筋的应力增加,直到混凝土裂缝区域的非预应力纵向受拉钢筋的屈服。我们发现当预应力配筋率是恒定的时候,总的配筋率增加会导致预应力筋应力降低。如果总的配筋率不变,那么预应力筋配筋率的增加会导致其应力减小。研究还发现,无粘结预应力筋应力增量受跨高比和两个临界段内支座和跨中处的总配筋率的影响。基于综合配筋率和预应力筋的配筋率参数的考虑,当非预应力纵向受拉钢筋屈服时,对无粘结预应力筋应力增量进行计算。同时,计算方法还包含了跨高比和两个临界段内支座和跨中处的总配筋率。因此,当非预应力纵向受拉钢筋屈服时,使用荷载下无粘结预应力筋的应力增量可以用屈服弯矩、开裂弯矩表示。当混凝土开裂到非预应力纵筋屈服期间,通过选择平均的分配比,分配比的计算公式是基于综合配筋率表示的。再根据弹性弯矩和再分布率计算屈服弯矩。通过考虑和包含的剪切力对裂纹的影响,建立了裂纹间距的计算公式。根据平均裂缝间距和裂缝宽度的测量结果,提出了合理考虑预应力影响的外部负载的无粘结预应力混凝土梁裂缝宽度的计算方法。