论文部分内容阅读
在碳纤维增强碳化硅(Cf/SiC)复合材料表面制备涂层对提高Cf/SiC复合材料抗氧化、抗冲刷能力具有重要的作用。本文在全面综述Cf/SiC复合材料表面涂层以及超高温陶瓷涂层研究进展的基础上,针对现有Cf/SiC复合材料抗氧化、抗冲刷性能存在的不足,开展Cf/SiC复合材料超高温陶瓷涂层制备及性能研究,旨在提高Cf/SiC复合材料抗氧化、抗冲刷能力,拓宽其应用范围。研究涂刷法和包埋法两种工艺制备了Cf/SiC复合材料超高温陶瓷涂层,并通过强度测试、扫描电镜、X射线衍射等测试手段对涂层组成、结构以及性能进行了分析。采用涂刷法在Cf/SiC复合材料表面制备ZrB2-SiC超高温陶瓷涂层,通过对涂层体系的设计,选择以二硼化锆、碳化硅和硼3种微粉为体系组元,以聚碳硅烷-二乙烯基苯体系为粘结剂,经低温固化以及1200℃高温烧成在Cf/SiC复合材料表面制备了ZrB2-SiC超高温陶瓷涂层。采用正交实验进一步研究了组分配比对Cf/SiC复合材料表面涂层性能的影响,结果表明,当填料成分为60wt.% ZrB2,4wt.% SiC,6wt.% PCS,4wt.% B,26wt.% DVB时,涂层性能最佳。Cf/SiC复合材料表面涂层的界面结合强度为2.01 MPa,经1200℃氧化30min后,Cf/SiC复合材料的氧化失重率仅为0.54%,强度保留率为97.3%,而在相同的氧化条件下,未覆盖表面涂层的Cf/SiC复合材料的氧化失重率为10.37%,强度保留率为38.7%。采用包埋法工艺制备ZrC-Zr2Si超高温陶瓷涂层,Zr-Si在Cf/SiC复合材料表面发生化学反应,生成均匀致密的ZrC-Zr2Si涂层,该涂层的厚度在10μm左右,涂层的内层为ZrC,外层为ZrC和Zr2Si。采用正交实验进一步研究工艺参数对涂层性能的影响,结果表明,当体系含量为60wt.%Zr-Si,30wt.%PCS-DVB,10wt.%Al2O3时,在1400℃保温8小时,涂层性能最佳,界面结合以化学反应结合为主,涂层与基体的界面结合强度为7.41MPa,覆盖有该涂层的Cf/SiC复合材料在1200℃氧化30min后的氧化失重率仅为0.30%,强度保留率为92.5%,由此可见该涂层具有较好的抗氧化效果。ZrC-Zr2Si涂层通过硼化处理工艺,当保温温度为1200℃,保温时间为3h时,可以转化为均匀致密的ZrB2涂层,Cf/SiC复合材料在1200℃下的氧化失重率仅为0.13%,强度保留率为94.3%,经硼化处理后的试样表现出相对更优的性能。