强激光驱动固体靶后鞘层电子束锁相发射理论研究

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:tingyu263
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着啁啾脉冲放大技术(CPA)的提出和发展,激光脉冲的宽度可以被压缩到飞秒级别,同时激光峰值功率也得到了大幅提高。这为强场物理的研究提供了新的机遇和挑战,也推动了高能量密度物理和超快物理等领域的发展。为了研究物质在阿秒时间尺度下的结构变化,需要使用脉宽低于飞秒级别的电子束进行探测。目前,一种基于飞秒强激光聚焦固体靶驱动表面等离子体波锁相电子发射产生阿秒电子束的方法备受关注,该方法具有灵活简便和实际可控性强的特点。本论文在表面等离子体波锁相电子发射的研究基础上,进一步研究了强激光驱动薄固体靶情况下的阿秒电子束发射机制。本论文的主要内容及创新点如下:(1)研究探讨了飞秒强激光聚焦在厚固体靶上的电子锁相发射基本物理过程以及能量转化关系。激光被等离子体镜反射后,电子在反射光场的零相位点受到的磁场力方向转变拉动电子注入激光场中。电子在光场正周期获得能量,又在负周期传递能量给激光,导致光场波形发生正周期幅值减小而负周期幅值增大的畸变。此外,通过对电子能量演化的分析证实了在激光脉冲的不同相位注入的电子会获得不同的能量增益,并在远场分布中表现为有质动力加速电子、真空加速电子和偏转条纹电子。(2)研究了飞秒强激光驱动薄靶条件下的电子束锁相发射机制。当强激光与薄靶前表面等离子体相互作用时,部分超快电子到达靶后表面受靶后鞘层场作用被反射回前表面,并在锁定相位周期性地注入光场,最终发射出阿秒电子束链(800nm薄靶模拟中观察到的脉宽为300 as)。本论文提出完整的靶后鞘层发射电子的运动模型,发现鞘层场形成阶段的场增益导致部分电子在鞘层反射阶段获得能量增益。这种能量增益随电子进入靶后鞘层场的时间的提前而增加,并随激光强度的增加而显著增加。本论文还研究了不同厚度薄靶条件下发射电子束的能量和电荷量变化,发现在薄靶条件下靶后鞘层反射的电子由于具有一定的初始注入能量,可以产生能量、电量更高的阿秒电子束。总而言之,与前表面等离子体波发射的电子束相比,经历薄膜靶后鞘层场加速的发射电子束具有更高的能量和更大的电荷量。未来,可以通过优化该机制来进一步改善阿秒电子束的能散和发射角度等参数,从而获得可用于超快电子衍射技术的超快电子束源,推动超快电子衍射技术的时间分辨率从飞秒到阿秒尺度的跨越。
其他文献
高频超声换能器以其优异的成像质量在血管成像、眼科成像和小动物成像等医学领域和检测领域具有重要应用。换能元件作为超声换能器中的核心部分,直接影响着换能器的性能,在这一方面,1-3复合材料表现出了巨大优势。而随着环境保护的理念逐渐得到人们的重视,使用无铅压电材料来替代铅基压电材料显得尤为重要。本项研究以(1-x)Na0.5Bi0.5Ti O3-x Ba Ti O3(NBBT)晶体为研究对象,从晶体的微
学位
高次谐波是强光驱动原子、分子过程中产生的一种高频相干辐射。它是阿秒量级超短脉冲的重要来源,也是获得短波长光源的重要手段。本论文采用全量子化的非微扰形式散射理论,研究了强激光场驱动原子生成的高次谐波的统计性质,开阔了高次谐波研究的视野,对拓展高次谐波在传感、高分辨率成像和量子通信等领域的应用有一定参考价值。本论文的主要研究内容及结果如下:(1)推导了电子在相干态激光场中运动的Volkov态。利用类薛
学位
碳化硅(SiC)作为第三代半导体材料因其耐高温、耐高压等优异性能被视为未来发展适用于极端环境的器件所不可或缺的材料之一。金属-半导体接触质量直接影响器件的应用,其中接触中的肖特基势垒不均匀(SBI)依然是近几年来研究的热点问题。之前的研究从微观角度讨论了SiC SBI问题,并指出退火形成的六角凹坑带来了低势垒区。本论文通过密度泛函方法(DFT)计算、动力学蒙特卡洛(k MC)模拟等方法,进一步从原
学位
学位
能源的日益紧缺和环境的污染问题促使以化石能源为基础的能源结构向以清洁能源为基础的能源结构转移。发展以氢气为基础的清洁能源时,氢气的分离提纯工作是氢能产业所必不可少的一环。与传统的氢分离技术相比,钙钛矿型致密陶瓷氢分离膜具有使用方便、氢气气氛下膜结构稳定、材料廉价和节约能耗等优点,已经引起了研究者的注意。致密陶瓷氢分离膜可以从工业规模的蒸汽重整产生的混合气体中分离和净化氢气。但是,目前的致密氢分离膜
学位
对超短超强激光的研究和控制提高了人类对微观方面的理解,以及对物质世界的改造能力。随着超短超强激光技术的迅速发展,激光的聚焦强度大幅度增加,目前实验室中能产生的激光强度高达1022W/cm~2,大大超出了原子的内部场强。激光与等离子体相互作用时有质动力作用凸显,且需要考虑相对论效应,这使得超强激光与等离子体作用产生丰富的非线性物理现象,如激光频移、高次谐波的产生(High-order harmoni
学位
近几年,超材料和超表面因其性质不再拘束于自然环境中的天然材料固有性质,可以根据实际要求设计加工的特点,受到了众多研究者的关注。这种具有新的独特电磁特性的人工电磁材料,展现出对电磁辐射控制和操纵的强大能力。所以在低频波段的太赫兹领域,广泛利用了超材料和超表面的优良特性,对太赫兹波进行多种调控。不仅如此,通过巧妙设计的金属结构在超材料中的电响应和磁响应,可以实现新的光学特性,通过人工设计的超材料在太赫
学位
在前沿生化及物质科学研究领域,为了对原子、分子超快动力学的物质结构进行研究,需要进行阿秒时间尺度分辨的诊断,这需要使用阿秒电子束或由其产生的阿秒辐射脉冲,阿秒电子束在超快电子成像、超快电子衍射和超快光谱学等领域拥有着巨大的应用前景。本文针对如何实现基于激光尾波场的单阿秒电子束产生进行了探究,通过将电子束注入到尾波场的零相位附近,控制激光和注入电子束的相关参数,有望获得持续时间长且脉宽可调谐的高品质
学位
光与原子相互作用的理论在量子光学中具有核心地位,以此为基础的实际应用吸引了很多研究人员的关注。目前,基于涡旋光与原子相互作用的研究不仅发现了许多新奇的物理现象和物理规律,而且开拓了以涡旋光为基础的诸多应用领域,如量子调控、高精密测量和量子信息处理等。涡旋光束的等相位面呈螺旋形结构,其光子携带轨道角动量,它与原子的电偶极相互作用和电四极相互作用都呈现出异于传统光与原子相互作用的物理规律。特别是原子在
学位
自1992年L.Allen等人发现了拉盖尔-高斯光携带有光子的轨道角动量(OAM)以来,涡旋光场及其轨道角动量特性逐渐引起光学界的广泛关注并成为目前光学研究前沿之一。涡旋光的轨道角动量已作为一种全新的光子自由度被广泛应用于各领域,为解决许多基础和技术问题提供了新的研究工具。近年来,科研工作者对轨道角动量的研究逐渐延伸到了X和γ波段,目前国内外已提出了利用线性、弱非线康普顿散射产生涡旋伽马光的方案,
学位