论文部分内容阅读
随着LED制造技术的发展,AlInGaN基紫外LED的性能也在稳步提升,将替代传统汞灯逐步成为新一代的紫外光源。目前紫外LED的波段逐渐往深紫外短波方向发展,辐照强度也往大功率方向发展。然而由于受到高A1组分外延生长技术的限制,以及器件欧姆接触、封装技术的影响,目前紫外LED与蓝白光LED相比存在光提取效率低和寿命差等问题,这对紫外LED的封装工艺和可靠性提出了更高的需求。为了获得低热阻、高光效和高可靠的紫外光源,本文从紫外LED固晶工艺出发,结合仿真和实验,围绕增强光提取效率开展相关研究,并使用氧化石墨烯纳米材料进行可靠性封装,最后将所优化的封装工艺应用于深紫外LED净化光源设计,为AlInGaN基紫外LED的封装设计提供了理论和实验支撑。主要研究内容包括:1)金锡共晶封装工艺优化基于直接金锡键合工艺,实现紫外LED芯片低空洞率低热阻热压键合,可以满足高可靠性封装要求。本文分析了不同空洞率样品的热阻和老化衰减,建立键合层空洞率与器件热阻、结温、寿命的关系,并使用有限元分析法模拟了键合层的温度场分布。结果表明,与30%空洞率的结构相比,3%键合层空洞率紫外LED的热阻可以降低48%。此外,还设计和制备了金属边框石英窗口,通过使用银铜纳米膏,将金属边框石英窗口与陶瓷基板烧结键合,完成高可靠性紫外LED封装,并研究了该封装结构的长期稳定性。2)光提取效率研究从紫外LED器件结构出发,研究了封装工艺影响光提取效率的主要因素,提出了多种提高紫外LED光提取效率的方法,包括使用高折射率氮化铝纳米颗粒密封剂、纳米阵列透镜、蛾眼结构柔性氟树脂薄膜(F2MF),不仅从封装角度研究和验证了上述方案的光提取效果,还从偏振角度分析了深紫外LED应用F2MF后TE和TM偏振的变化。实验结果表明,当使用0.4 wt%氮化铝纳米颗粒密封剂时,紫外LED的光输出功率增加了 17.4%;与平面透镜结构相比,纳米阵列透镜封装的深紫外LED的光输出功率最大提高了24.7%,其发射角的最大增幅约为14°;贴合F2MF的深紫外LED光输出功率提高了26.7%,并使TE和TM模式分别增益了20.5%和21.8%,改善了 AlGaN基深紫外LED的全模式光提取效率。3)氧化石墨烯复合材料基于氧化石墨烯的高导热特性,提出并制备了氧化石墨烯硅胶,以满足低热阻表面贴装结构的需求。同时建立热阻网络模型,进行传热学理论分析,并使用有限元分析法验证了该实验结果。实验结果证明4 wt%氧化石墨烯复合硅胶可以减少30%的焊接层热阻,同时降低结温1.2℃。此外,还提出并制备了一种新型的氧化石墨烯氟胶密封剂,通过实验分析了密封层的空隙率和界面粘接结合能力的关系。结果表明氧化石墨烯氟胶配合硅烷偶联剂,可以在深紫外LED粘接界面实现“锚定结构”,增强425%界面粘接结合能力,极大地改善了深紫外LED的光热性能及长期稳定性。4)深紫外LED光源设计及应用验证应用上述封装技术和杀菌动力学原理,本文设计了一种深紫外LED净化光源,并定义有效紫外辐照剂量和光源的辐照强度模型,以满足实际杀菌应用效果。针对不同出光角的深紫外LED,通过设置不同模型,使用光线追迹法模拟接收面的辐照强度分布,并讨论内腔遮挡情况对辐照强度分布的影响。最后通过仿真生物实验和高低温冲击实验,验证所设计光源的实际杀菌效果和封装可靠性。