等式约束优化与极大极小化问题的罚函数研究

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:hynyjhnyjn66656
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在现实生活中会遇到在众多方案中选择一类方案使得资源使用效益最大或者目标成本最低的问题,这样的一类问题称为最优化问题.最优化问题根据有无约束条件划分为约束优化问题和无约束优化问题.在理论推理和算法设计方面,约束优化问题和无约束优化问题有很大的不同,但此两类问题在某种情况下是可以相互转化的.一般情况下,无约束优化问题比约束优化问题的求解相对容易.本文选择非线性规划中的罚函数方法将约束优化问题转化为无约束优化问题,通过求解无约束的罚问题来求解带有等式或不等式的约束优化问题.对于传统的罚函数,若是简单光滑的,则一定不精确;若是简单精确的,则不光滑.因此本文的主要工作是改造传统罚函数,使简单罚函数既是精确的,又是光滑的.本文结构安排如下:  第一章主要介绍约束优化问题和罚优化问题的基本概念、基础知识以及本文的主要工作.  第二章针对等式约束优化问题,通过对约束函数增加变量,提出一类简单罚函数并结合K-K-T条件和Lagrange函数证明这一类简单罚函数在有界闭集上同时具有光滑性和精确性.本章提出一种新的算法解决此类等式约束优化问题并给出数值例子说明算法的可行性.  第三章针对等式约束优化问题,提出一类新的简单罚函数并证明它是光滑精确的.最后给出数值例子说明本章所给算法的可行性.  第四章针对不等式约束优化问题,引入目标罚因子和约束罚因子,提出一类新的简单精确罚函数.此罚函数同时惩罚目标函数和约束函数,使得约束函数的违反度减小的同时目标函数趋近于最优值.基于此类新的罚函数分别给出全局最优求解算法和局部最优求解算法,并且分别证明了算法的收敛性.最后给出数值算例,说明所给算法是可行的.
其他文献
在这篇硕士论文中,我们分别考虑了带有加性噪声的随机强阻尼Plate方程及带有高斯白噪声的随机Plate方程解的长期性态.  第一章,给出了全文要用到的基本概念和一些抽象结论.
稀疏约束最优化问题是应用数学中的一个非常重要的领域。它在数字信号处理、图像处理、压缩传感、机器学习等领域有着广泛的应用,近年来有了很大的发展。最近,它又成功地被应用