论文部分内容阅读
在现代船体结构设计的研究领域中,船体梁的极限状态分析已愈来愈受到人们的重视。这是因为完善的结构设计是与船体梁的真实强度储备紧密地联系在一起的。而要了解船体梁实际的强度储备就必须对船体梁的极限强度有一个正确的分析和评估。 本文沿用Caldwell等人直接计算船体极限强度的思想,考虑双层底和顶边水舱对船体极限强度的贡献,首先将船体梁整体破坏时剖面应力分布确定为:在中垂状态下,甲板及甲板附近的舷侧均屈曲,双层底区域则均屈服,其他部分保持弹性状态;在中拱状态下,双层底及之间的底舷侧均屈曲,甲板及顶边水舱区域均屈服,其他部分则保持弹性状态。确定了船体梁整体破坏时的剖面应力分布之后,关键在于确定板架的极限屈曲强度。本文充分考虑了在纵向弯曲、横向压力作用下加筋板可能发生的几种破坏模式,即板架的整体屈曲破坏、梁柱形式的破坏、筋的侧倾、腹板的屈曲并同时考虑了初始焊接残余应力、初挠度的影响,使其更精确的计算加筋板的屈曲强度。对于加筋板中加强筋腹板的局部屈曲,采用解析法推导出筋的腹板的挠度方程及其边界条件,求解相应的方程,从而计算出腹板的局部屈曲应力。对于加筋板中筋的侧倾失稳,则通过能量法推导加强筋侧倾失稳时的总势能泛函,利用最小势能原理求解出此失稳模式下的临界应力。对于焊接残余应力、初始挠度和横向水平压力的影响则作为参数考虑在其中。从而船体梁结构的极限屈曲强度可简单地表示为船体梁在极限状态时截面上各部分的应力与其对应的到中和轴距离的乘积的和。 最后,在总结上述研究内容的基础上,本文编制开发了一套具有工程实用价值的船体极限强度的计算程序,经计算与来自国际船舶钢结构委员会著名学者的计算结果进行了比较,说明该程序简单、可靠,可方便地应用于船舶强度校核和评估。