论文部分内容阅读
随着物流业的迅猛发展,物流的数据信息也呈几何级增长,但目前的信息系统,通常无法对这些庞大的数据信息进行深入地分析,从而无法精确了解行业发展的规律、应当引导的方向。因此建立一种新型的信息系统十分必要。传统的数据库管理信息系统不能够很好地利用、分析数据库中积累的大量数据,数据挖掘与数据仓库技术可以很好地解决这一问题。数据挖掘(Data Mining)是致力于数据分析和理解,揭示数据内部蕴藏知识的技术,它是未来信息技术应用的重要目标之一。它可以通过对大量的数据进行探索分析,挖掘出有意义的规则,以期待对未来的决策提供适当参考建议。近十几年来,数据挖掘技术已得到了广泛的研究及应用,并且在商业、金融、医疗等领域得到成功的应用。本文研究物流运输系统的目的正是为了帮助物流配送企业随着市场需求变化,不断调整企业的运作方针,优化企业的业务流程,提高企业经营管理水平和企业竞争力。笔者将数据仓库技术、数据挖掘技术与物流配送调运模型结合建立的物流运输系统,能够帮助企业优化资源,为企业的发展做出辅助决策。本文首先对物流进行了定义,阐述了当前物流配送在国内外的发展状况,重点介绍了我国物流运输成本居高不下的原因,指出传统物流管理系统运输模块的不足之处,提出将数据挖掘技术运用于物流管理系统的运输子系统中,用遗传算法解决配送线路优化问题。阐述了数据挖掘的理论与技术方法,比较了数据挖掘与传统分析方法的区别和联系,指出数据挖掘在解决具有海量信息处理、发现数据特征、辅助决策等问题方面有较强的优势,满足物流管理系统对配送模块的需求。详细介绍了物流配送路径优化问题的遗传算法的原理和动态规划法在物流管理系统运输决策模块中具体算法,得出了最优运输方式。最后本文在对系统进行了全面的需求分析的基础上,根据实际需要用C++和Access设计了数据库结构和相关的应用程序,设计了物流运输模块的基本构架及部分程序,并作了部分仿真实验,实际应用效果表明,本文所提出的基于数据挖掘的物流运输系统,能提高运输效率,减少操作人员的工作量,优化配送路线,为决策者更快、更好地做出判断提供了重要的数据依据,预测结果较好地符合了实际情况,具备了进一步研究的学术价值和实际应用价值。