在带利率风险市场上保险公司的最优投资

来源 :复旦大学 | 被引量 : 0次 | 上传用户:moli2146
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我们考虑的是一个由复合泊松过程刻画的风险过程,在有利率的资本市场上,保险公司可以通过适当的投资,使得风险过程的破产概率最小.该文中,我们首先给出了一个Bellman方程从而求得了保险公司的一个适应的投资策略,并证明了它的最优性,然后文章给出了Bellman方程解的存在性,且讨论了几种特殊情况.最后我们由Bellman方程得到了带利率无投资的风险模型的破产概率的Laplace变换解析式.这是我们的一个意外的结果,且它与Sundt/Teugels(1995)结果一致.
其他文献
在系统科学的发展史中,人们认识世界的能力逐步提高,对于认识对象的研究也由浅入深,由单一转向复杂.70年代后期,社会发展和科技进步导致事物之间的关系呈现多维性、多样化、
对流扩散问题或含有此类方程的偏微分方程组能广泛应用到很多领域,如能源开发、水利工程、流体力学等.由于对流扩散方程的特点,间断有限元方法是解决此类问题的常用方法,数值方
自二十世纪一,二十年代,P.Fatou和G.Julia对复解析动力系统的开创性的研究工作以来,复解析动力系统的研究一有近百年的历史了.当前,随机复动力系统的研究是此科学研究的一个
如果拓扑空间X,Y的拓扑和X∨Y的自同伦等价可以对角化,则X∨Y的自同伦等价群Aut(X∨Y)可表示为它的两个子群Autx(X∨Y)与AutY(X∨Y)的乘积.而且Aut(X∨Y)的特殊子群Aut(X∨Y)
CR-子流形理论是Bejaneu A于上世纪七十年代所开创的一个数学领域,三十多年以来有了很大发展.许多学者研究了不同度量的不同流形的CR-子流形的性质.十九世纪八十年代,Bejancu,Ch
该文在回顾代数学历史发展的前提下,以范德瓦尔登的《近世代数学》(1930-1931)以及同时代著作为研究对象,一定程度上阐述了代数结构思想的含义,说明了范德瓦尔登的《近世代数
Davidson方法和Newton方法是求解对称矩阵特征值的两种有效方法.该文研究了Davidson方法与Newton方法的关系,并重点研究不精确Newton方法.我们将不精确Newton方法做了推广和
该文以概率理论及其与Dirichlet问题之间的联系为基础,提出了一种Dirichlet问题的数值方法,以解决上述存在的种种问题.该论文由七章组成.第一章综述了Dirichlet问题数值解的