基于目标意图预测的多无人机协同攻防智能决策

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:kql999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,无人机作为现代战争的新兴力量,在空战中的作用越来越显著,受到了各大军事强国的广泛关注。无人机空战自主决策作为无人机技术的一部分,是提升无人机自主性的关键技术,引起了国内外众多学者的极大兴趣。但是,随着军事科技的不断发展,空战环境日渐复杂,想要在复杂环境下占据空战主动权,必须准确洞察敌方无人机的战术意图。本文在复杂环境中的无人机空战背景下,对基于意图预测的多无人机协同攻防智能决策进行了研究。
  首先,建立了无人机攻防智能决策系统的总体架构,从整体上分析了基于意图预测的多无人机协同攻防智能决策系统的具体实现方案,并详细介绍了目标意图预测、多无人机目标分配、空战机动决策三个部分具体内容和研究方法。
  其次,针对非完备信息下无人机空战目标意图预测问题,提出了一种基于长短时记忆网络(Long and Short-Lerm Memory, LSTM)的非完备信息下空战目标意图预测模型,采用分层的方法建立空战目标意图预测特征集,并将空战信息编码成时序特征,将专家经验封装成标签,引入三次样本插值函数拟合以及平均值填充法来修补不完备数据,利用自适应矩估计(Adaptive moment estimation, Adam)优化算法,加快目标意图预测模型训练速度,同时能够有效防止局部最优的问题,并通过仿真验证了意图预测模型与求解方法的准确性和有效性。
  此外,针对多无人机协同目标分配问题,设计了一种基于改进离散狼群算法的多机协同目标分配算法,综合考虑空战态势、战机性能、目标意图建立了多机协同目标分配模型,针对空战存在的单机对单机、单机对多机、多机对多机分配情况,设计虚序列编码方式,同时设计了离散狼群算法的智能行为,另外引入头狼游走机制强化头狼搜索能力,采用自适应奔袭步长方式加快离散狼群算法的收敛速度,并通过仿真实验验证了本文所提的基于改进离散狼群算法的多机协同目标分配算法的有效性。
  最后,针对无人机空战机动决策问题,依据空空导弹对不同区域的攻击效果建立空战态势模型,结合无人机运动学模型和基本操纵机动动作库构建无人机机动决策模型,另外综合考虑空战态势与目标意图采用概率神经网络对敌方无人机机动动作进行预测,根据敌方无人机机动动作采用强化学习方法选择我方机动策略,并通过仿真实验验证了机动预测方法与机动决策方法的合理性和有效性。
其他文献
工业过程大都具有非线性、时滞、耦合等特征,并受外界干扰等影响。由于这些特征及影响的存在,常会导致控制系统超调量增大,调节时间变长,从而使系统的过渡过程变坏,稳定性降低,极易引起闭环系统的不稳定。如何克服这些问题,对系统进行有效的控制成为了控制理论领域与工程领域研究的重点。由于非线性和时滞等特性的存在,一方面难以得到系统精确的数学模型,另一方面线性系统相关的研究成果很难直接应用到非线性系统中。近年来
近十多年来,社交媒体所伴随而来的快速增长的用户量以及每天产生的海量数据,已经成为目前最为重要而广泛的公共课题。Facebook已经拥有1000亿图像数据并且还在以每月超过25亿新图像速度增长。日益剧增的社交媒体图像数据正迫切需求更加行之有效的机器学习技术来对海量数据进行表达、分析和理解,从而能够帮助更好的实现基于互联网的管理、搜索、和社交系统的设计。亲属关系是社交媒体中最主要的人际关系之一。近年来
学位
随着大数据时代的来临,多源信息融合已经发展成为信息决策系统的关键技术之一。然而,由于传感器设备的物理局限性、系统运行的不确定性,甚至是环境的未知动态干扰等问题,导致多粒度信息融合问题日益成为信息融合研究的一大挑战。针对信息融合的理论研究是解决多粒度信息融合问题的有效途径,本文以DSmT(Dezert-Smarandache Theory)为理论框架,以穿戴式人体传感器网络(WBSNs,Wearab
学位
时间序列数据广泛存在于各个应用领域,其预测一直是研究的热点问题。时间序列预测方法的核心就是从数据序列中挖掘出变化规律,并对将来的数据做出估计。随着数据挖掘和机器学习方法的迅速发展,时间序列的预测方法也越来越多,越来越先进。然而每一组时间序列数据都有其独特的变化规律,因此预测方法不具有通用性。针对每类时间序列数据集的特点采用相应的数据处理和预测方法,可以提高预测精度。风速和辐照度时间序列是新能源领域
学位
贝叶斯网络作为一种经典的机器学习算法,具有直观的模型,计算简便,被逐渐应用于数据挖掘的研究中。从贝叶斯网络学习的方向来看,分为结构学习和参数学习,本文主要针对后者进行研究。从学习的目的性来看,分为生成学习和判别学习。在实际分类过程中,由于生成学习与分类目标不一致,导致分类精度下降。为了解决分类精度下降的问题,近年来对判别学习的研究逐渐增加。但判别学习的计算过程较为复杂,处理复杂贝叶斯网络时学习效率
四旋翼无人机因其结构轻巧,造价低廉,灵活性高等优点,已经在国防、商业和农业领域有所应用。为了进一步推广四旋翼无人机的应用,使其更加可靠地给人们的生活带来便利,如何设计高效的路径规划算法和提高轨迹跟踪的精确性是需要重点考虑的两个核心问题。因此本文将从这个角度切入,着重研究了四旋翼无人机动力学模型的建立、基于RRT的路径规划算法、基于干扰观测器补偿的反步轨迹跟踪控制、基于范数优化的迭代学习控制方法。论
学位
图像超分辨率(Super Resolution,SR)是指通过算法提升图像分辨率以突破硬件限制的技术,具有良好的应用前景。近年来,压缩感知和稀疏表示理论在图像去噪,图像重建,图像压缩等领域取得了广泛关注,基于稀疏表示的SR技术相较于传统基于重建等方法具有重建质量高,鲁棒性强等优势。针对上述背景,本文对基于稀疏表示的图像SR重建关键技术展开研究,主要工作及创新点如下:首先,本文阐述了稀疏表示理论基础
学位
数字图像篡改盲取证算法,凭借其不依赖于任何先验信息,仅根据图像本身的信息对图像进行真实性、完整性检测,成为图像取证领域主要研究方向之一。篡改图像由于篡改场景各式各样,篡改对象五花八门,篡改区域没有固定的形状、纹理等特征,因此图像篡改盲取证的难度较大。而现有数字图像盲取证算法大多采用基于图像块训练的方式,效率低下,检测方式固化且对于篡改区域定位问题没有很好解决。因此,本文从语义分割角度出发,将篡改图
学位
近年来,基于深度信念网络(DBN)的滚动轴承故障诊断方法逐渐成为研究热点。然而目前大部分基于深度学习的算法都是采用公式计算特征后再输入到DBN中,需要运用大量的信号处理方法,步骤繁琐、计算复杂;深度模型超参数的选择往往依赖于人工,不能自适应控制模型的建立。针对上述问题,本文提出三种基于深度学习的滚动轴承故障诊断方法,有效降低了计算复杂度,提高了故障诊断精度,具有重要的理论意义和应用价值。本文主要工
学位
无人直升机(UMH)在民事和军事上具有广泛的应用前景,目前在国内外均成为热门的研究领域。飞行控制系统是实现无人直升机自主飞行功能的核心部件,在飞行控制系统研发过程中需要通过硬件在回路的实时仿真试验对飞行控制律、机载飞行控制计算机的硬件接口和软件的状态进行验证。本文基于主从式结构的集成式仿真系统硬件平台,对飞行控制实时仿真系统软件设计的关键技术进行研究,旨在为对象无人直升机的飞行控制系统实现简洁高效
学位