【摘 要】
:
无人自行车具有机构简单、能耗小、重量轻等优点,并且能够适应较为狭窄的区域,因此在物资运输,安防巡查的等领域拥有很好的应用前景。现有的关于无人自行车的运动控制研究中,主要注重其侧向平衡运动的控制,这也是本文主要研究的内容。同时,考虑到无人自行车实际的应用环境较为复杂,在不同地形行驶时会受到不同的外界干扰,要求自行车需要具有一定的能够克服这些外界干扰的鲁棒性。因此,本研究将致力于提升无人自行车侧向平衡
论文部分内容阅读
无人自行车具有机构简单、能耗小、重量轻等优点,并且能够适应较为狭窄的区域,因此在物资运输,安防巡查的等领域拥有很好的应用前景。现有的关于无人自行车的运动控制研究中,主要注重其侧向平衡运动的控制,这也是本文主要研究的内容。同时,考虑到无人自行车实际的应用环境较为复杂,在不同地形行驶时会受到不同的外界干扰,要求自行车需要具有一定的能够克服这些外界干扰的鲁棒性。因此,本研究将致力于提升无人自行车侧向平衡运动的稳定性,以无机械辅助的无人自行车为研究对象,设计一种自抗扰控制器来实时调节车体运动姿态,实现无人自行车的侧向平衡运动。具体的研究内容如下:1)对现有的无人自行车物理样机建立合适的非线性动力学模型并线性化处理。对无人自行车系统的完整约束和非完整约束进行分析,选用查普雷金方程,建立无人自行车的非线性动力学模型,用于数值仿真中计算系统的状态响应;同时考虑到控制器工程化的实时性要求,对建立的非线性模型进行线性化处理,并通过力矩响应对比验证该线性系统的准确性。2)基于处理得到的线性化模型完成自抗扰控制器的设计。根据自抗扰控制方法原理,分两个部分设计控制器:第一部分设计两个状态观测器,分别用于观测横滚角、横滚角速度以及车把转角、车把转角速度,同时估计车体收到的集总干扰;第二部分引入全阶滑模控制作为线性状态反馈控制律部分。最后对控制器的稳定性进行验证。3)使用Matlab-Simulink工具进行侧向平衡运动仿真。数值仿真分为两个部分进行:第一部分为自抗扰控制器的侧向平衡仿真,第二部分为全阶滑模控制器的侧向平衡仿真;根据系统的状态响应对自抗扰控制器的鲁棒性进行分析。4)根据设计完成的自抗扰控制器在物理样机的工控机上编写C++程序,分别进行自抗扰控制器和全阶滑模控制器的无人自行车侧向平衡实验,采集实验时车体的各个状态数据,由数据图像对比分析自抗扰控制器的鲁棒性。本文主要针对无人自行车实际应用环境的路况较为复杂的问题,参考自抗扰控制方法设计了抗扰能力较强的控制器,并完成了侧向平衡运动的数值仿真和物理样机实验。研究结果表明,该控制器具有一定的能够克服外界干扰的鲁棒性,能够有效提升无人自行车对外界环境的适应能力。此结果可以为无人自行车的轨迹控制等研究提供一定的研究基础。
其他文献
滚筒作为采煤机上破煤、碎煤的关键截割部件,其截割参数的优化调整是实现采煤机低能耗高效开采的前提。由于地下矿井开采环境恶劣,待截割煤壁表面厚度随机分布,滚筒不能根据待截割煤壁厚度的变化实时调整截割参数,如何精准的获取待开采煤壁表面厚度特征,根据煤壁三维表征特性实时调整滚筒截割参数是目前亟待解决的首要问题。因此,通过搭建采煤机煤壁截割实验台、重构待截割煤壁三维表面、构建采煤机多参数耦合优化模型,实现煤
多体动力学建模作为车辆性能分析与研发的重要环节,模型的动力学参数与建模精细程度直接影响工程应用的精准度与可信度,质量线法可方便灵活的获取动力学参数,但存在坐标获取复杂和质量需已知等不足,且商用车多体动力学的研究多为建模方法与仿真应用,对精细化建模技术的研究较少,为此,本文以某型号商用车为研究对象,对商用车动力学参数获取与精细化建模及验证展开研究,主要的内容如下:1、论述了课题的研究背景与意义,介绍
如今我国的人口老龄化日益严重,随之而来的是一系列的老年人身体健康问题。据统计,跌倒在我国老年人因伤致死的原因中占比最高,而跌倒的主要诱导因素是人的平衡感知能力不够。研究表明,自行车骑行运动与平衡感知能力有密切的联系,表现在人类平衡感知敏感性会随着车体倾斜方向、变化频率的不同而不同,具有明显的多维度矢量特征。因此,如果有一种原地不动的机构能以较高的还原度模拟骑行过程中的状态,就能很大程度上帮助操作者
深度学习在工业的产品检测中发挥的作用越来越重要,其能够应用的场景也越来越多,但是也存在“类内差异大,类间差异小”和小数据样本不均衡等问题,研究人员尝试将深度学习应用到产品的缺陷识别中,解决这些难题。本文将注意力机制、软阈值、以及残差收缩网络结合,以带钢为主要对象,通过残差收缩网络和特征融合的残差收缩网络的方法对其进行缺陷识别。具体的研究内容如下:(1)阐明了产品表面质量缺陷识别的总体方法和其研究价
在测距系统中,调频连续波(FMCW)技术相比飞行时间法(To F)有发射功率低、分辨率高的特点,并且不依赖高精度计时系统,因此被广泛应用于军事高精度雷达测距及民用汽车自动驾驶(激光雷达)上。本文将当前热门的FMCW技术与电子封装组装测试相结合,设计并实现了一个PCB板级互连线长度的检测系统。首先,开展FMCW相关技术调研,主要为FMCW生成方式和长度检测原理。在理解系统原理的基础上,使用Optis
平衡感知能力作为一项重要的生理指标,在康复治疗领域中起着至关重要的作用。对于脑瘫病患,他们失去平衡能力,就容易摔倒,摔倒往往会造成严重后果。因此,平衡感知能力作为人体的一项重要指标,在预判人体跌倒和诊断医学疾病方面具有重要作用。反映人体保持各种姿势和适应环境的能力,是近年来的研究热点,在体育、康复医疗、航天航空等领域得到广泛的应用。因此,有必要设计开发一种检测与康复训练相结合的康复机器人,以便准确
随着工业化生产的发展越来越快,工业机器人和工业生产的应用结合越来越紧密。但是很多时候,单一的工业机器人运动简单,工作范围小,无法满足复杂的生产需求,因此双机器人系统协同配合技术成为解决这一问题的主要方向和研究热点。本文将已有的两台KR20R1810-2机器人组合建立成一个双机器人系统,同时对双机器人系统基坐标的标定、碰撞检测以及协调配合运动等问题进行了研究,主要研究内容如下:根据机器人的结构参数,
微观液滴冻结是引起宏观结冰/结霜现象的根本原因。结冰/结霜现象广泛存在于航空、气象、电力通讯、冷藏制冷等生产和生活领域。为解决工程领域的积冰和除冰等问题,本课题开展具有变形特性的液滴冻结实验研究。以冰结构蛋白液滴和醋酸液滴为研究对象,探究了具有变形特性的复杂液体液滴冻结形貌特性变化及其传热特性。揭示单个液滴冻结相变过程的界面效应和热质传输耦合规律,为改善结冰、防冰和除冰相关的工程应用提供理论基础。
经济的高速发展,使节能减排成为全球当下亟待解决的问题。用较为轻质的铝合金代替部分钢,通过降低车身重量来降低能耗实现节能减排,是当下一种十分可行的方法。然而,由于铝和钢在熔沸点等诸多热物理性能方面存在着较大的差异,在焊接过程中,极易生成大量脆性化合物而导致裂纹的产生,对接头的力学性能带来了极大的影响。因此,对铝/钢异种金属焊接工作展开研究,探讨提高焊接接头质量的有效方法十分必要。本文以1mm厚的A6
<正>在小学数学概念教学环节,数学教师需要突破传统的思维限制,引领学生在概念学习期间实现个性化成长、发展。在小学数学概念教学环节,数学教师需要突破传统的思维限制,引领学生在概念学习期间实现个性化成长、发展。教师在该过程中应当做好精细化调整,找到概念教学的切入点,同时结合学生的实际学习需求,优化现有的概念教学举措,从而提高教学水平。