【摘 要】
:
随着微电子、信息和可再生能源技术的飞速发展,人们对二次电池的性能提出了越来越高的要求。而现有电池体系在能量密度方面的提升空间有限,迫切需要发展基于新材料和新技术的新型二次电池体系。锂空气电池由金属锂负极、电解质和空气正极组成,其理论能量密度是锂离子电池的十倍以上,被视为跨越式提高二次电池比能量的下一代电源。目前锂空气电池的电解质多为有机电解液,其挥发易燃、无法抑制枝晶的特点使锂空气电池存在较大的安
论文部分内容阅读
随着微电子、信息和可再生能源技术的飞速发展,人们对二次电池的性能提出了越来越高的要求。而现有电池体系在能量密度方面的提升空间有限,迫切需要发展基于新材料和新技术的新型二次电池体系。锂空气电池由金属锂负极、电解质和空气正极组成,其理论能量密度是锂离子电池的十倍以上,被视为跨越式提高二次电池比能量的下一代电源。目前锂空气电池的电解质多为有机电解液,其挥发易燃、无法抑制枝晶的特点使锂空气电池存在较大的安全隐患。如若将有机电解液替换为固态电解质,构建的固态锂空气电池既能抑制锂枝晶,又能将金属锂负极与空气正极
其他文献
由传统抗生素疗法导致的细菌耐药性的产生,已经成为人类健康和生命的主要威胁之一。因此,迫切需要研究可行的替代方法,在实现高效抗菌的同时不引发细菌耐药性的产生。目前,基于不引发细菌耐药性产生的物理抗菌策略引起了研究者的广泛关注。金属有机骨架(Metal-organic frameworks,MOFs)材料因其丰富的种类与功能、较好的生物相容性等特性成为物理杀菌的潜在平台。然而MOFs材料大多以粉末或块
由于气候变化迅速,人类为解决大气污染问题,走上了从燃烧碳氢化合物获得能源向可再生替代能源转变的道路。但是来自太阳能和风能的不稳定性导致人们继续寻找正确使用和储存这些能量的防范,而超级电容器正是对这一问题的解决办法之一。因此,研究超级电容器电极材料的改性和开发是世界能源行业的优先事项。本研究以镍钴磷酸盐为原材料,在碱性介质中原位转化为电活性的氢氧化物,生成具有较高的容量和良好的长时间充放电稳定性的电
人类文明的建设离不开化石能源的消耗,传统化石能源的过度消耗导致亟待解决的全球能源危机及环境问题,可持续能源的开发和利用迫在眉睫。世界资源委员会对全球能源消耗的结构进行分析,并做相应能源消耗情况的展望:从2018年到2050年,可再生能源总消费量以3.6%的年增速增长。到2050年底,在电力需求扩大、全球工业化发展和全球化政策的推动下,可持续能源将成为一次能源消费的主要来源,预计到2050年,可再生
共轭高分子作为一类具有光电功能的高分子材料,近年来已被深入研究。但限于共轭高分子溶液的方法和手段,对共轭高分子前体溶液的链行为及其前体溶液到薄膜动力学演变过程的研究均鲜见报道,这为我们的研究提供了机遇和挑战。共轭高分子溶液链行为与其薄膜凝聚态相关性的研究,不仅是对共轭高分子前体溶液链行为和薄膜凝聚态结构内在物理关联的揭示,而且对提高共轭高分子光电器件性能均具有重要的理论与实际意义。本文集中于几种共
蛋白质酪氨酸的可逆磷酸化是真核生物调节多种生理活动的重要手段。蛋白酪氨酸磷酸酶(PTPs)超家族可以与蛋白酪氨酸激酶(PTKs)超家族协同作用,共同维持细胞内酪氨酸磷酸化和去磷酸化的生理平衡。虽然科学家们很早就开始研究PTPs的调控机制,但是单纯利用实验手段来研究PTPs的调节机制仍然存着较大的局限性,科学家们很难得到生理状态下PTPs的动态结构。随着计算机技术和模拟算法的高速发展,分子动力学模拟