论文部分内容阅读
化学治疗是抑制恶性肿瘤最常用也是最有效的治疗方式。目前,大多数用于化学治疗的抗癌药物一般采用静脉滴注的给药方式。静脉滴注的给药方式虽然直接有效,但同时也具有耗时长,副作用大,无法连续治疗的缺点。口服抗癌药物相对施药方便,耗时短,病患依从度高,但胃肠道和肝脏的首过效应使得口服化学疗法难以实现。壳聚糖(Chitosan, CS)作为一种天然的阳离子多糖,具有良好的生物相容性和组织亲和性,它能够可逆性的打开小肠上皮细胞间紧密连接,使药物通过细胞旁途径进入人体循环,在口服药物输送领域具有较好的应用前景。对CS进行羧甲基化修饰,制备出中性条件下可溶的羧甲基壳聚糖(Carboxymethyl chitosan, CMCS),红外光谱检测证实了羧甲基基团成功连接在壳聚糖分子骨架上,乌氏粘度法测定CMCS的分子量为12kDa,元素分析结果表明CMCS的脱乙酰度和羧甲基取代度分别为81%和92%。分别以3H-吲哚菁型生物荧光标示染料(Cy3NHS Ester)和异硫氰酸荧光素(FITC)为荧光标记,共价连接在CS和CMCS主链上(Cy3-CS,FITC-CMCS),用于对载体材料定位示踪。以离子交联法制备CS纳米凝胶(CS-nanogels,CS-NGs),平均粒径和zeta电位分别为187.8nm和+33.4mV,以聚电解质凝聚法合成了CS/CMCS纳米凝胶(CS/CMCS-nanogels, CS/CMCS-NGs),平均粒径和zeta电位分别为202.4nm和-40.7mV。透射电镜观察CS-NGs和CS/CMCS-NGs均为球形,其中CS/CMCS-NGs形状规则,粒径大小均一,分散均匀,而离子交联法制得的CS-NGs为不规则球形,粒径分布较宽,并有团聚现象出现。溶血实验表明,CS-NGs和CS/CMCS-NGs的红细胞溶血率均低于5%,符合医用材料对于溶血率的要求。蛋白吸附实验表明,CS-NGs和CS/CMCS-NGs对牛血清蛋白(Bovine serumalbumin, BSA)的非特异性吸附率较低,结合溶血实验结果表明两种纳米凝胶有较好的血液相容性。采用MTT法检测了CS-NGs和CS/CMCS-NGs的细胞毒性,结果表明两种纳米凝胶对胎鼠成纤维细胞(MEFs)、人脐静脉内皮细胞(HUVEC)、人结直肠腺癌细胞(Caco-2)具有良好的细胞相容性,当浓度为1000μg/mL时,对人乳腺癌细胞(MCF-7)表现出潜在的细胞毒性。以盐酸阿霉素(Doxorubicin hydrochloride,DOX)为模型药物,通过离子交联/聚电解质凝聚法结合透析的方法制备了包载DOX的壳聚糖纳米凝胶(DOX:CS-NGs)和包载DOX的壳聚糖/羧甲基壳聚糖纳米凝胶(DOX:CS/CMCS-NGs),其平均粒径分别为209.6nm和279.3nm;zeta电位分别为32.8mv和-33.8mv;DOX包封率分别为35.43%和72.87%;DOX包载量分别为14.9%和21.4%。利用透析法研究DOX:CS-NGs和DOX:CS/CMCS-NGs在连续的胃肠道模拟液中的释药行为,结果表明,在胃模拟液(pH1.2)中,DOX:CS-NGs的药物释放速率明显高于DOX:CS/CMCS-NGs,2h内,DOX:CS-NGs和DOX:CS/CMCS-NGs的药物累积释放率分别为32.4%和12.6%;随着释药介质依次改变为十二指肠模拟液(pH6.0,2h),空肠模拟液(pH7.0,2h),DOX:CS-NGs和DOX:CS/CMCS-NGs的药物释放速率较慢且大致相同,二者的药物累计释放率分别为,十二指肠模拟液:DOX:CS-NGs42.3%,DOX:CS/CMCS-NGs22.4%;空肠模拟液: DOX:CS-NGs61.2%,DOX:CS/CMCS-NGs38.7%,当释药介质改变为回肠/小肠上皮细胞间隙模拟液(pH7.4,2h)后,DOX:CS-NGs和DOX:CS/CMCS-NGs的释药速率加快,其终点药物累计释药率为87.6%和81.4%。以上结果表明,与DOX:CS-NGs相比,DOX:CS/CMCS-NGs能够有效降低药物在胃酸环境下的突释,将药物定向输送至小肠部位,在进入小肠上皮细胞间隙后释放药物。以小肠囊法分别研究了DOX:CS/CMCS-NGs和DOX:CS-NGs在大鼠不同肠段中的粘膜粘附性及通透,结果表明,DOX:CS/CMCS-NGs在十二指肠、空肠以及回肠部位能够有效促进相应肠段对DOX的粘附及吸收,其药物透过率和粘附率分别为DOX:CS-NGs的1-3.2倍和1.1–2.4倍。以传统静脉注射DOX作为对照,分别对小鼠进行口服DOX溶液、DOX:CS-NGs以及DOX:CS/CMCS-NGs,研究了四种剂型的药代动力学和组织分布,结果表明,DOX:CS/CMCS-NGs能够有效提高DOX的口服生物利用度,其绝对生物利用度为42%,是口服的6倍DOX,口服DOX:CS-NGs的1.75倍。口服DOX:CS/CMCS-NGs24h后,在小鼠的肝脏、脾脏、肺部仍可检测到DOX,且含量远高于其他三种剂型,表明DOX:CS/CMCS-NGs能够显著延长DOX在体内的循环时间。以小鼠为动物模型,通过分别在1d和15d两次给药的方式,研究了25天内静脉注射DOX、口服空白CS/CMCS-NGs以及口服DOX:CS/CMCS-NGs的对小鼠的心肾脏毒性,测量小鼠的体重以及心肾重量和生化指标,结果表明,与传统静脉注射DOX相比,口服DOX:CS/CMCS-NGs能够显著减小DOX的心肾毒性。利用Caco-2细胞对双荧光纳米凝胶(Cy3-CS/FITC-CMCS-NGs)的摄取和转运的方式和途径进行了定性和定量研究,结果表明,Caco-2细胞对Cy3-CS/FITC-CMCS-NGs的摄取和转运主要是一种主动运输,主要通过网格蛋白介导的内吞方式进行。分别研究了CS、CMCS以及CS/CMCS-NGs在不同pH值环境下对钙离子的螯合作用,结果表明,三种材料对钙离子的螯合能力随pH值的升高而加强,其对钙离子的螯合能力为CS/CMCS-NGs>CMCS>CS,表明CS/CMCS-NGs对钙离子具有的较高的螯合能力主要归因于纳米凝胶的3D结构中和CMCS组分。利用Caco-2致密单层构建小肠吸收模型,研究了DOX:CS/CMCS-NGs经细胞旁途径透粘膜的机理,结果表明,纳米凝胶的CS和CMCS组分均能够可逆性降低Caco-2致密单层的跨膜电阻(Transepithelialelectrical resistance, TEER),使药物经肠道通过细胞旁途径进入体循环,其中,CS降低TEER的幅度随pH的升高(pH6.6-pH7.4)而减小,而CMCS降低TEER的幅度随pH值的升高(pH6.6-pH7.4)而增大。向DOX:CS/CMCS-NGs中加入钙离子后,Caco-2的TEER的降低幅度显著减小,结合纳米凝胶及其组分对钙离子的螯合作用表明,DOX:CS/CMCS-NGs经细胞旁途径透粘膜作用归因于其CS和CMCS组分的协同作用,在弱酸性(pH<7)条件下,即十二指肠环境中,DOX:CS/CMCS-NGs中质子化的CS组分能够打开细胞间紧密连接,同时,部分去质子化的CMCS组分能够螯合钙离子,打开细胞间粘合连接进而促进药物通过细胞旁途径进入体循环;在中性及弱碱性条件(pH≥7)下,即空肠和回肠环境中,CS组分去质子化,打开细胞间紧密连接的能力减弱,而完全去质子化的CMCS组分螯合钙离子能力增强,确保药物的持续吸收。采用离子交联结合滴注法和乳化法的方式以将DOX:CS/CMCS-NGs固定于多层海藻酸钙胶球(Multilayer alginate bead, M-ALG-Bead)中,得到载药纳米凝胶固定化多层球(NGs-M-ALG-Bead),利用响应面分析的方法优化制备过程,结果表明,NGs-M-ALG-Bead对DOX的包封率与海藻酸钠的浓度、氯化钙浓度以及DOX:CS/CMCS-NGs浓度有关而与多层球的层数无关,当海藻酸钠的浓度为3.44%,氯化钙浓度为3.23%,DOX:CS/CMCS-NGs浓度为0.3%时,得到最高的药物包封率(97.21%)。不同层数的NGs-M-ALG-Bead的溶胀实验及NGs-M-ALG-Bead在连续胃肠道模拟液中的释药动力学表明,4层的NGs-M-ALG-Beads在胃酸环境下最稳定,其溶胀率和药物累计释放率分别5%和3.8%,有利于提高剂型在小肠部位处的有效浓度,而在小肠部位,随着海藻酸钠多层球的解体,完整的DOX:CS/CMCS-NGs被逐渐释放出来,有利于延长DOX:CS/CMCS-NGs与小肠上皮粘膜的接触时间,提高小肠对药物的吸收效果,离体小肠粘附性和通透性实验表明,NGs-M-ALG-Beads能够有效提高DOX:CS/CMCS-NGs的粘膜粘附率和药物通透率,分别为游离DOX:CS/CMCS-NGs的1.07-1.15倍和1.28-1.38倍。本文以壳聚糖及其水溶性衍生物羧甲基壳聚糖为原料,制备了一种壳聚糖/羧甲基壳聚糖纳米凝胶用于口服药物的输送。通过体外、体内实验评估了该材料的粘膜粘附性、通透性以及生物安全性并研究了其透粘膜机理。通过将该纳米凝胶固定于海藻酸钙多层球中,进一步提高了药物的输送效率,结果证明该纳米凝胶有望成为一种安全有效的药物口服输送载体。