【摘 要】
:
非晶态合金又被称为“金属玻璃”,因其独特的原子排列结构,即长程无序、短程有序的原子排布状态,使其具有优异的力学、物理和化学性能。电火花沉积技术具有放电频率高、放电区域小、能量集中、加热和冷却速度快等特点,是一种极具发展潜力的非晶涂层制备技术。采用电火花沉积技术制备非晶涂层,不仅可以改善材料的表面性能,也可拓宽非晶合金的应用领域,具有广阔的应用前景。本文采用电火花沉积技术,以Fe-Cr-Ni固溶体合
【基金项目】
:
山东省自然科学基金; 广西有色金属及特色材料加工重点实验室开放基金;
论文部分内容阅读
非晶态合金又被称为“金属玻璃”,因其独特的原子排列结构,即长程无序、短程有序的原子排布状态,使其具有优异的力学、物理和化学性能。电火花沉积技术具有放电频率高、放电区域小、能量集中、加热和冷却速度快等特点,是一种极具发展潜力的非晶涂层制备技术。采用电火花沉积技术制备非晶涂层,不仅可以改善材料的表面性能,也可拓宽非晶合金的应用领域,具有广阔的应用前景。本文采用电火花沉积技术,以Fe-Cr-Ni固溶体合金和WC-10Co硬质合金为电极,在45Mn2合金的表面预置Fe基非晶合金粉末,制备非晶复合涂层。利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验机和电化学工作站等分析涂层的表面形貌、相组成、组织结构、微区成分、涂层硬度、摩擦磨损及电化学腐蚀行为。利用ANSYS有限元分析软件对Fe基非晶复合涂层的沉积过程中的温度场进行模拟,探索非晶结构的形成机制。在硬度测试试验中,施加的载荷为100g,饱载时间为15s;在摩擦磨损试验中,对磨环材料为GCr15钢,转速为420r/min,法向载荷40N,磨损时间为30min;在腐蚀试验中,测试温度为25℃,参比电极为饱和甘汞电极,铂电极为对电极,试样为工作电极。固溶体沉积层为单一的FCC结构,固溶体/非晶复合沉积层由非晶和FCC结构固溶体组成。沉积层具有金属光泽,表面形貌呈橘皮状。沉积层元素与基体元素发生相互扩散,涂层与基体呈现良好的冶金结合。固溶体沉积层的表面粗糙度Ra为0.734μm,平均厚度为30μm,平均显微硬度为345HV,磨损量为0.04g,自腐蚀电位Ecorr和腐蚀电流密度icorr分别为-0.488V和7.084μA/cm2,固溶体/非晶复合沉积层的表面粗糙度Ra为1.969μm,平均厚度为30μm,平均显微硬度为1091HV,磨损量为0.003g,自腐蚀电位Ecorr和腐蚀电流密度icorr分别为-0.486V和5.100μA/cm2。WC沉积层的主要由W2C和W6C2.54相组成,WC/非晶复合沉积层由非晶相和W2C相组成。沉积层的表面形貌与固溶体沉积层形貌相似。WC沉积层的表面粗糙度Ra为8.700μm,平均厚度为30μm,平均显微硬度为1066HV,磨损量为0.008g,自腐蚀电位Ecorr和腐蚀电流密度icorr分别为-0.636V和13.896μA/cm2,WC/非晶复合沉积层的表面粗糙度Ra为4.313μm,平均厚度为30μm,平均显微硬度为1345.9HV,磨损量为0.004g,自腐蚀电位Ecorr和腐蚀电流密度icorr分别为-0.543V和8.792μA/cm2。电火花沉积单脉冲模拟实验结果表明,脉冲放电时,两极之间瞬间释放大量的能量,且呈高斯分布,热影响区在微米级别。热量沿深度方向的扩散距离小于半径方向,说明半径方向更易受到热量的影响。在整个脉冲周期中,固溶体/非晶复合涂层温度场和WC/非晶复合涂层温度场的平均降温速率在106℃/s级别,满足非晶合金形成的冷速条件。
其他文献
在短短几年的时间里,基于有机/无机杂化钛矿材料的太阳能电池(PSCs)的光电转化效率(PCE)从2014年的3.8%迅速突破至如今的23.7%,成为下一代实用化太阳能电池的有利竞争者。与传统的半导体材料相比,这种杂化钙钛矿半导体材料具有直接带隙、长载流子扩散长度、高电荷迁移率和光致发光效率等优异的光电性质。因此,有机/无机杂化钙钛矿材料成为光伏材料领域一种受到人们广泛关注的新型功能材料。但钙钛矿材
采用相变材料(Phase Change Materials,PCMs)进行热量存储是能源领域高效储能的重要研究方向。石蜡(Paraffin)是最佳的中低温PCMs,其储能密度大(200 k J/kg)、无过冷现象、物化性能稳定、价格便宜。石蜡用于建筑围护结构中,能降低室内温度波动幅度,减少建筑物供暖、空调运行的时间,是提高建筑室内舒适度和节能效率的有效有段。然而,石蜡导热系数低(~0.2 W/m
随着社会的发展和制造业的不断进步,传统制造业已经难以满足人们的需求,特种加工技术应运而生,电火花加工技术作为其中的一个重要分支在加工难切削材料方面有着独特的优势,如何提高加工效率、降低电极损耗、提高加工工件表面质量一直是该领域学者们关注的问题。作为电火花铣削加工平台的重要部分,电火花铣削脉冲电源为电火花铣削加工提供能量。针对传统电火花铣削脉冲电源输出能量小且电能利用率低的问题,本文选定“高效节能电
电火花加工是目前应用最广泛的一种特种加工技术,由于其去除材料的方式不与工件接触,使其相比于传统加工具有很大的优势。但是,我国的电火花加工机床还存在着电能利用率低、加工质量差等缺点。本文针对这些缺点对电火花成型加工脉冲电源及其伺服系统进行了设计。提出了一种节能电火花成型加工电路,该方法复合了高压击穿回路与低压加工回路。高压小能量回路用于击穿放电通道,低压大能量回路进行加工。取消了限流电阻,大大提高了
二氧化钛(TiO2)具有非常稳定的物理化学性能、光稳定性能和光催化性能,被广泛应用到光降解污染物以及光解水制氢等光电催化领域。但是TiO2存在禁带宽度大,只能吸收紫外光,对可见光的敏感度很小。为了加宽TiO2的光吸收范围,增强其光电催化性能,对TiO2进行不同复合途径改性。二维半导体材料由于结构的原因与块体结构相比具有不同的性质,另外具有超薄、超轻和柔性等优秀特点,被学者们广泛关注。通过将二维半导
本论文在无模板剂、无表面活性剂情况下,采用一步水热法合成SnO2掺杂NaNbO3及硅藻土(简称为DE),制得嵌入型纳米复合材料,该材料具有复合混装型结构(纳米针、纳米块和纳米颗粒)的特征。对所制备的粉体试样进行X射线衍射(XRD)、能谱分析(EDX)、场粒子发射扫描电子显微镜观测(FESEM)和BET比表面积测试等物性结构表征。结果表明,水热时间、水热温度、碱度环境及复合试样配比对试样微观形貌、晶
在役焊接因具有修复时间短、环境污染小、经济效益显著等优势而日益得到重视。由于修复过程中管道内仍有高压油气运输,所以在役焊接修复存在较大技术难度,其中烧穿是首先要解决的问题。为了揭示烧穿失稳的本质,本文通过有限元数值模拟和分子动力学模拟相结合的方式,研究烧穿过程中焊接接头不同微区的力学性能,揭示其在服役条件下失效的微观动力学行为,从微观上阐明烧穿失稳的动态演化过程。同时,研究了微缺陷对管道微观力学性
通过制备固体润滑涂层可有效解决由摩擦磨损造成的机械、材料等失效问题。采用激光熔覆-离子渗硫复合处理技术制备的固体润滑涂层能够降低材料表面的摩擦系数,提高工件的使用寿命,但当前研究多集中于Fe S、Mo S2等金属硫化物膜的制备,侧重润滑薄膜的微观表征、摩擦磨损性能等,对硫化物薄膜的形成机理没有深入研究。本文采用激光熔覆技术制备镍基合金熔覆层和铁基合金熔覆层并在不同熔覆层表面进行离子渗硫,渗硫实验中
铜及铜合金因其良好的导热性和较好的耐蚀性被广泛应用于空调、制冷等行业。某制冷设备中的冷却系统需要将黄铜分液器与紫铜分流管进行焊接,长期以来主要应用火焰钎焊的方法进行连接。该方法工人劳动强度大、工作条件恶劣、生产成本高、产品质量不稳定。对于上述问题,本文改进钎焊工艺技术,采用高频感应钎焊替代火焰钎焊,并分析焊接过程中工艺参数对焊接接头组织和性能的影响,为实现紫铜分流管和黄铜分液器高质量的焊接生产提供
因为长期暴露在外部环境中,材料的磨损和腐蚀等通常是从材料的表面开始的,而表面损伤或者破坏会影响材料的综合使用性能。因此,采用各种表面处理技术改善材料的表面性能有着十分重要的意义。作为一种表面改性方法,金属材料表面纳米化是在材料的表层制备出纳米晶体结构,来提高材料的综合力学性能。但常见的表面纳米化技术对类似高温镍基合金这类高强高硬材料表面纳米化效果并不显著。结合电脉冲对材料微观结构、力学性能的影响,