甘草药渣制备多孔炭及其高值化利用研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:mater
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着中医药事业的蓬勃发展,中药固废年产量近亿吨,中药固废的排放和处置已成为制约我国中医药产业绿色发展一大难题。中药中有大量植物源药材,含碳量高,是良好的碳材料前驱体。以中药固废为原料制备多孔炭用于CO2吸附和超级电容器电极对于中药固废的处置及碳减排具有重要意义。以典型中药固废——甘草药渣为例,开展了以下研究:(1)甘草药渣、药材水热炭化及其三相产物特性影响规律。研究发现所需产物仅为固相水热炭时,煎煮处理的影响较小。240~270°C是较优的水热炭化反应温度,此温度区间内原料基本炭化完全且能量损耗较小,水热炭产率为36.18%~43.26%,270°C得到的水热炭比表面积为3.88 m~2/g,需要进一步活化改性以提升孔隙结构。(2)采用氮掺杂辅助水热炭化-KOH活化两步法制备了用于CO2吸附的掺氮多孔炭,研究发现600°C活化下的多孔炭具有较高的CO2吸附容量(6.43 mmol/g,0°C和1 bar)、CO2/N2选择性(21.3)和初始等量吸附热(28.7 k J/mol)。CO2吸附能力由0.7 nm以下的超微孔体积和氮含量共同决定,在25°C和1 bar下,吸附剂的氮含量,特别是吡啶酮氮含量与CO2吸附容量呈现较强线性相关性。(3)采用高浓度ZnCl2盐模板辅助水热炭化-高温热解两步法制备了用于电容器电极的分级多孔炭,发现ZnCl2模板在水热过程中起制孔和稳定作用,有利于介孔/大孔结构形成;在热解过程中起活化作用,有利于微孔结构形成。700°C热解下的分级多孔炭在三电极体系测试下比电容为248 F/g(电流密度1 A/g),组装的对称型超级电容器能量密度为4.2 Wh/kg。
其他文献
低压化学气相沉积(Low pressure chemical vapor deposition,LPCVD)因易获得高质量的石墨烯而备受关注,但其制备机理明显区别于常压化学气相沉积(Atmospheric pressure chemical vapor deposition,APCVD)。本文基于两组分气体动理学理论,研究微通道内甲烷与氢气混合气体流动传热特性,探讨LPCVD制备石墨烯的微观机制。
学位
固体燃料燃烧是硒人为大气排放的重要来源。硒在炉内与无机矿物反应不完全,相当一部分气态硒迁移至尾部低温烟气中。因此,强化低温烟气中硒的深度脱除,对于实现固体燃料燃烧过程中硒的排放控制具有重要意义。基于此,本文研究内容和结论如下:优化了灰样中硒测试方法,分析了飞灰中硒的分布特征。结果表明煤粉炉燃煤飞灰中硅铝矿物趋于以物理吸附方式捕集气态硒,使得飞灰中SeO2(s)占有较高比例(22.62%~58.03
学位
大涡模拟方法是一种直接解析流体大尺度含能涡团的方法,其对于亚网格尺度的流体涡团则采用亚格子模型进行补偿。在气固两相湍流大涡模拟中,这种亚网格尺度流体结构信息的缺失,会造成离散相颗粒运动的模拟产生较大误差。本文采用小波过滤器耦合颗粒结构化差分(Differential Filter,DF)模型,构建基于小波过滤的结构化颗粒所见亚格子流体速度模型,重构和强化亚网格流体涡结构信息,提高颗粒扩散和颗粒对动
学位
目前全球范围内已建立数个兆瓦级化学链装置,但低成本高性能氧载体的规模化制备仍是化学链燃烧领域的瓶颈问题。本文从发展工业规模氧载体制备技术和氧载体长周期化学链燃烧特性两方面着手,开展了以下工作:首先探索了铜铁复合氧载体的实验室规模制备流程,并通过50次热重循环实验,考察不同水泥添加量的Cu20Fe80@C(铜矿石与铁矿石质量比为20:80)的反应稳定性及抗烧结特性,结合颗粒破碎强度,确定Cu20Fe
学位
汽车破碎残余物(ASR)即报废汽车经部件回收、车身破碎、金属分选后的残余物,具有高热值、高挥发分、低含水率的特点,通过热解可以将其转化为高值化产品。然而,ASR组分复杂且各组分热解特性差异大,产物难均质化且伴有大量含氯污染物。为此,本文研究了宽升温速率范围内ASR的产物生成特性,探讨了氯迁移分布规律,重点解析了有机氯向无机氯的转化机理,并深入研究了主要氯源之一的氯丁橡胶热解过程中氯的迁移转化规律。
学位
氮氧化物是导致酸雨、光化学烟雾的主要原因。现有低温SCR脱硝催化剂价格昂贵,采用模块化安装亦增加了企业的运行维护成本。因此降低催化剂的价格,开发出能够实际应用的成型催化剂成为目前的研究热点。本文选取了价格低廉的燃煤飞灰作为催化剂载体,优化了活性组分配方,开发出脱硝性能良好的低温催化剂。接着开展了催化剂的成型化研究,制备出直接用于填充床的颗粒状催化剂,为未来的大规模制备积累了相关成型工艺参数。最后考
学位
燃煤发电机组灵活运行增大了工况变化范围和速率,放大了系统非线性特性,增大了系统控制难度。以某660 MW燃煤电站SCR系统为研究对象,建立了适用于宽负荷的动态连续平推流SCR脱硝机理模型,开发了基于深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)的SCR脱硝直接控制策略和基于DDPG的SCR脱硝自适应PID控制策略,提高了SCR控制系统在灵活
学位
微化工的高传热性、高比表面积、高安全性等优点使得其逐渐用于甲烷重整制氢。然而微化工技术仍需较高温度,且原料气被浪费,并生成副产物。文章从结构、物理分离和化学吸附三个方面出发,探究了结构强化、渗透强化和吸附强化甲烷重整的作用。研究内容如下:首先,设计了直管、平板圆弧和三纹内螺旋枪管三种不同复杂程度结构的微反应器物理模型,研究发现降低入口速度、增加水碳比、适当提高温度,可以促进反应发生,降低反应达到稳
学位
NH3于2017年被认定为可再生能源,因此NH3利用是实现双碳目标的重要途径之一。由于NH3存在低层流火焰传播速度、高点火能量和含氮等特性,NH3燃烧存在稳定性差和高NOx排放等挑战。目前主要采用掺混高反应性燃料和旋流燃烧提高NH3燃烧的稳定性;采用分级和加湿燃烧降低NOx排放。MILD燃烧作为一种高效、稳定、低排放的燃烧方式,有望实现NH3的稳定低排放燃烧。本文自主设计了新型MILD燃烧器,通过
学位
液滴蒸发现象在喷雾燃烧等领域普遍存在,是两相流领域的关键基础问题,由于其尺度小、速度快,对液滴蒸发的数值模拟研究引起了广泛的关注。然而,计算过程中的数值离散误差往往导致在相界面附近出现非物理的虚假速度,从而影响两相流数值模拟结果的准确性。本文发展了一种基于改进的Lax-Wendroff格式的、具有精细平衡性质的两相流数值格式,验证了其在抑制虚假速度上的有效性,并应用该格式对液滴蒸发过程进行了模拟与
学位