论文部分内容阅读
作为一个角动量体,陀螺飞轮可通过改变其角动量幅值和指向,实现航天器三轴姿态控制力矩的输出。若同时对改变陀螺飞轮角动量指向的控制力矩及其它相关量进行测量,并通过算法解算,可以实现对航天器两轴姿态角速度的测量。这一实现方式将显著提高航天器姿态控制系统的集成度,减小系统的质量和体积。本文以航天器执行器与敏感器一体化实现为研究背景,针对具有多自由度动量交换功能的陀螺飞轮系统,以如何实现航天器两维姿态角速度测量功能为目标,进行了如下几方面的研究:首先,针对陀螺飞轮的理想模型建立及验证问题,在给出坐标系定义的基础上,分别从矢量力学和分析力学角度,基于牛顿-欧拉法和拉格朗日法建立了陀螺飞轮本体理想动力学模型。同时,利用多体动力学仿真软件SimMechanics搭建了陀螺飞轮本体仿真平台,通过仿真平台与动力学模型的相互比较,验证了所推导的陀螺飞轮本体理想动力学模型的正确性。其次,针对陀螺飞轮实现中必然存在非理想因素影响和倾侧转子动力学特性复杂的问题,综合利用牛顿欧拉法、拉格朗日法、达朗贝尔原理,分别建立了陀螺飞轮存在正交支撑不垂直、不共面以及转子质心偏移等非理想因素的数学描述,并在此基础上,分析了各主要非理想因素对转子动力学特性的影响。进一步,利用陀螺进动理论,揭示了陀螺飞轮大角度进动倾侧过程中产生的非线性耦合机理,并通过力学分析,揭示了陀螺飞轮对航天器两轴姿态角速度的敏感特性。再次,针对陀螺飞轮实现航天器姿态角速度的测量方案问题,考虑到陀螺飞轮动力学方程具有多变量约束、强非线性的特点,利用差分演化算法完成了复杂陀螺飞轮动力学方程的合理简化。利用简化后的动力学方程,结合直接微分法,建立灵敏度方程,对航天器姿态角速度灵敏度的进行了数值分析。依据灵敏度分析结论,建立了姿态角速度静态测量方程,并提出了基于分时复用策略的姿态角速度静态测量方案。为使陀螺飞轮的测量与执行功能可同时实现,进一步基于动量交换原理,提出了姿态角速度动态测量方程,并论证了所提动态测量方程的非线性可观性。然后,针对陀螺飞轮实现航天器姿态角速度静态测量的误差补偿及应用问题,分析了系统误差对姿态角速度静态测量精度的影响,并结合误差传播分析,给出了各传感器测量精度需求。在此基础上,对姿态角速度静态测量方程的系统误差补偿进行了分析,并分别利用速率法、多位置法对静态测量方程中不同的系统参数实现了分类标定。为在实现姿态角速度静态测量的基础上,充分发挥陀螺飞轮三轴力矩输出功能,基于冲量等效原理和力矩指令规划,提出了陀螺飞轮测量功能与执行功能分时复用设计,给出了分时时间约束,保证了在单位采样时间区间内,陀螺飞轮可实现两轴姿态角速度测量和三轴力矩输出功能。最后,针对陀螺飞轮倾侧运动过程中实现航天器姿态角速度测量的问题,分析了动态测量方程中所存在的系统模型误差,并利用蒙特卡罗法,对动态测量方程中传感器测量噪声的影响进行了仿真分析。在误差分析基础上,基于中心差分理论,对传统的非线性预测滤波方法进行改进,提出了一种改进非线性预测滤波方法,并结合动态测量方程特点,将所提出的滤波方法应用于姿态角速度动态测量中,抑制了系统模型误差和传感器测量噪声影响,并实现了在陀螺飞轮倾侧运动状态的航天器姿态角速度实时估计。