论文部分内容阅读
纳米管具有较大的比表面积,很多物理和化学过程比如表面扩散、吸附、氧化、催化、腐蚀等等的发生都与表面有关。通过在纳米管的内外表面上掺杂吸附来修饰改性,可以大大扩展纳米管的应用范围。本文采用第一性原理方法,重点研究了过渡金属填充、吸附和替代掺杂A-B二元系纳米管的几何结构、电、磁、光学性质,主要得到以下重要的结论:(1)对于BCC结构Fe纳米线填充扶手椅型(8,8)A-B二元系纳米管(用Fen@(8,8)AB表示),当内部纳米线与外部纳米管之间的相互作用以物理方式(库仑力)为主要作用机制时,无论是纳米线还是纳米管均保持与它们初始相似的形貌特征;当内部纳米线与外部纳米管之间的相互作用以化学方式(杂化成键)为主要作用机制时,整个纳米缆结构将会发生较严重的结构扭曲,因而限制了复合体系某些方面的优越性质。结合能计算结果表明,我们所讨论的Fen@(8,8)AB纳米缆结构的形成过程均是放热的,而且,在以库仑相互作用为主的纳米缆结构中,Fe。纳米线的稳定性有所增强。关注Fe5@(8,8)AB系统的导电能力时发现,GeC纳米管和BN纳米管包裹Fe5纳米线后,纳米缆结构的导电能力相比于Fe5自由纳米线不变或有所增强,而SiN纳米管包裹Fe5纳米线使得复合结构的导电能力有所下降。不仅如此,在Fe5@(8,8)AB纳米缆结构(尤其Fe5@(8,8)GeC和Fe5@(8,8)BN)中,电子在费米能级处还保持了相对较高的自旋极化。因而,复合系统不仅能够应用在纳米微电子电路连接方面,还可能会在电子自旋注入方面得到较好的应用,从而实现了材料的多功能化。(2)对于HCP结构Fe纳米线填充锯齿型BN纳米管和C纳米管(分别用Fen@(m,0)BN和Fe@(n,0)C表示)而言,形成能计算结果建议Fe@(m,0)BN(8≤m≤15)系统中只有Fe@(8,0)BN系统的形成过程是吸热过程,其他系统都是放热的。而Fe@(n,0)C(8≤n≤14系统中也是只有Fe@(8,0)C系统的形成过程是吸热过程。最稳定的Fe@(13,0)BN系统的形成能小于最稳定的Fe@(12,0)C系统的形成能,说明BN纳米管在包裹保护HCP结构铁磁金属纳米线方面可能比C纳米管的包裹更加稳定。考查系统电子自旋极化发现,所有Fe@(n,0)C系统的自旋极化都非常高,而Fe@(m,0)BN系统中除Fe@(8,0)BN系统之外其他系统也均保持了高的自旋极化。因此,这样的纳米缆结构可以被应用在自旋电子学的某些方面,如电子自旋注入和自旋输运等。磁性分析表明,相比于C纳米管,BN纳米管在屏蔽其内部金属纳米线的磁矩方面具有潜在的优势。更重要的是,低维Fe纳米线在化学性质稳定的C纳米管或BN纳米管保护下可以防止被氧化和退磁,进而能够在常规环境下稳定存在较长的时间。(3)对于3d过渡金属原子吸附BN纳米管而言,不同的吸附原子最稳定的吸附位置是不同的。结合能计算结果显示,3d轨道未满的金属V、Cr和Mn原子能够强有力地吸附在扶手椅型(8,0)BN纳米管上(Eb>4.OeV);Sc、Ti、Co和Ni原子能够以化学方式吸附(1.OeV<Eb<2.0eV);Fe和Cu原子只能以很小的结合力吸附(Eb<0.5eV);Zn原子吸附是一个特例,即对于任意一个初始吸附位置,优化后计算的结合能几乎为零,意味着Zn原子不是以化学方式吸附在BN纳米管外表面上而是通过范德瓦尔斯力即物理方式吸附在管外壁上。特别指出的是,对于V、Mn和Fe原子吸附的(8,0)BN纳米管,只有一种类型的电子(自旋向上或自旋向下)穿越费米能级,意味着吸附系统具有半金属性,因而可以应用于生产近100%自旋极化电流的自旋电子学领域;对于Cr原子在洞位H吸附(8,0)BN纳米管,吸附系统即具有磁性又表现出半导体性,是一种潜在的稀磁半导体材料。(4)对于过渡金属原子M(M=V,Cr,Mn和Fe)替代掺杂BN纳米管,B19VN20和B19MnN20系统表现出半金属性特征。与Cr原子吸附BN纳米管相似,B19CrN20系统同样呈现出半导体和磁性双重特性,并且对于低浓度Cr替代掺杂BN纳米管,这种双重特性可能不依赖于或很少依赖于BN纳米管的手征性。光学介电函数的分析结果表明,M原子掺杂BN纳米管后虚部ε"(ω)出现明显的红移现象,导致了光吸收范围有所扩大。尤其是,B19CrN20系统在约0.3eV(红外区域)处显示了一个新的主吸收峰,意味着BN纳米管在外来Cr原子的调制作用下对红外光的吸收大大增强,因而B19CrN20系统在红外技术相关领域(如红外探测器、红外微波发射器等)可能具有潜在的应用。(5)受曲率的影响,完整的、Cd替代掺杂的和O缺失的ZnO纳米管的禁带带宽小于相同情况下类石墨烯结构ZnO单层的禁带带宽。对于ZnO单层和ZnO纳米管两种结构,Cd替代掺杂情况下的禁带带宽小于理想情况下的禁带带宽,相反地,O空位情况下的禁带带宽大于理想情况下的禁带带宽。特别地,Zn空位的出现为ZnO单层和ZnO纳米管引入了磁性。ZnO单层卷曲成纳米管结构后,曲率诱导的导带向费米能级的漂移使得光学吸收边红移,引起了理想和缺陷情况下ZnO纳米管结构对可见光的吸收。同时,电子在r点从价带顶激发到邻近导带上所需的光子能量减小(波长增大),相应的吸收峰向可见光区移动。不同于Cd替代掺杂和Zn空位,O空位的存在使得r处的电子可能更容易从价带顶激发到附近的导带上。这便导致在O空位情况下ZnO纳米管对可见光的吸收变得更强。我们所获得的结果对于改进太阳能辐射吸收新型材料的设计来说是一个有益的启发,为其提供了一个新思路。(6)对于提议的LiF纳米管状结构,虽然计算的平均原子结合能稍微小于体相结构LiF的结合能,但是较大的结合能仍然意味着LiF纳米管状结构存在的可能性。能带结构分析表明,锯齿型和扶手椅型LiF纳米管都具有绝缘特性,因此宽带隙的锯齿型和扶手椅型LiF纳米管可能在纳米光学及材料存储等方面有潜在的应用。当过渡金属M (M=V, Cr, Mn和Fe)原子吸附掺杂(8,0)LiF纳米管时,无论M原子在哪个初始吸附位置,优化后过渡金属原子几乎都位于其最近的F原子的顶位。特别是V原子、Cr原子和Mn原子吸附掺杂(8,0)LiF纳米管后,优化后的吸附系统均表现出半金属特征,因而有望应用在准一维自旋相关输运电子器件方面。