黑尾叶蝉感染水稻矮缩病毒后唾液腺转录组变化分析及其两种RNA病毒基因组结构分析

来源 :浙江大学 | 被引量 : 0次 | 上传用户:jinhao03
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
病毒普遍存在于生物体中,极具生态和基因组多样性。昆虫作为地球上已知数量和种类最为丰富的生物类群,是多种病毒的寄主,也是虫媒病毒的重要介体。而相较于已知昆虫和潜在的病毒数量,目前对昆虫病毒的了解还远远不足。近些年来,测序技术的发展加速了昆虫病毒的发现与鉴定,使越来越多的病毒从无症状感染的昆虫宿主中被鉴定出来。黑尾叶蝉Nephotettix cincticeps是亚洲地区常见的水稻害虫,可以传播多种水稻病毒,如水稻矮缩病毒(rice dwarf virus,RDV)。为探究黑尾叶蝉与RDV的关系,本研究在黑尾叶蝉RDV感毒与未感毒唾液腺转录组分析基础上,选择了差异表达的ML(MD-2-related lipid-recognition)基因,并在载量变化较大的病毒中各选取了一种正链和负链RNA病毒进行了系列研究。主要研究结果如下:1.黑尾叶蝉RDV感毒与未感染唾液腺转录组比较分析通过对RDV感毒与未感毒的黑尾叶蝉唾液腺进行转录组比较分析,发现在感染RDV后共有622个差异表达的基因,其中342个基因表达上调,280个基因下调,对差异基因进行富集分析。选择82个差异基因进行验证,其中52个昆虫基因和10个病毒相关序列通过定量PCR得到确认。相关病毒序列c12476g1、c13775g1、c31720g1和c84382g1在感染RDV后表达水平上升,c31757g1、c44831g1、c53292g1、c57866g1、c57866g2和c18405g1表达下降。2.黑尾叶蝉ML基因鉴定及ML蛋白与RDV互作检验对黑尾叶蝉的ML基因进行鉴定,共发现6个ML基因。选择NcML1、NcML2和NcML6基因进行多序列比对和系统进化树分析,并对其编码的蛋白序列进行三级结构建模。使用q PCR对3个NcML基因在不同组织、不同时期的表达模式进行检测,发现在脑中NcML最为丰富,尤其是NcML6基因。使用酵母双杂交、Pull-Down分别验证NcML1、NcML2和NcML6蛋白是否与RDV病毒蛋白互作,结果显示NcML6蛋白与RDV的Pns6、P8和Pns12蛋白互作结果呈阳性。为了解NcML6基因潜在的功能,对黑尾叶蝉进行RNA干扰。NcML6基因干扰效果良好,但并未引发任何症状。3.一种新型黑尾叶蝉iflavirus病毒基因组结构与传播模式研究对Nephotettix cincticeps positive-stranded RNA virus-1(NcPSRV-1)病毒基因组序列做进一步确认和分析。该病毒基因组长10,524核苷酸(nucleotide,nt),不计入poly(A)尾,包含一个大的开放阅读框(open reading frame,ORF),该ORF编码一个含3,192个氨基酸(amino acid,aa)的多聚蛋白(polyprotein)。在ORF两侧为5’和3’非编码区(untranslated regions,UTR)。病毒NcPSRV-1具有典型的iflavirus基因组结构,在进化树分析中与Iflaviridae病毒科成员聚类在一起。NcPSRV-1在黑尾叶蝉种群中可进行水平传播和垂直传播。在实验室种群中NcPSRV-1的感染率和病毒载量(viral load)随时间不断增加,维持在较高水平。NcPSRV-1可以侵染黑尾叶近缘种二条黑尾叶蝉N.apicalis,以及黑尾叶蝉的寄生蝇黄足头蝇Pipunculus multillatus,目前尚未有证据显示可以侵染电光叶蝉Recilia dorsalis和水稻Oryza sativa variety TN1。持续RDV感染可改变实验室种群NcPSRV-1的感染率和病毒载量,对NcPSRV-1的增殖抑或传播有一定的拮抗作用。而高NcPSRV-1带毒量的黑尾叶蝉其RDV感毒和传毒的能力逊于NcPSRV-1阴性叶蝉。4.一种新型黑尾叶蝉rhabdovirus病毒基因组结构与进化分析对病毒Nephotettix cincticeps negative-stranded RNA virus-1(NcNSRV-1)基因组序列做进一步确认,获得全长12,361 nt,两端为非编码的3’leader和5’trailer。病毒反义正链的基因组包含5个主要的结构蛋白基因,依次为N、P、M、G和L,是典型的Rhabdoviridae病毒科基因组结构。在G和L基因间,有一个additional gene,命名为P6,该基因具有独立的转录单元,编码一个功能未知的蛋白。系统进化上,NcNSRV-1与昆虫中发现的未分类rhabdovirus病毒聚集在一起,且与其他rhabdovirus病毒在蛋白序列一致性上并不高。转录调节序列一般较为保守,而NcNSRV-1病毒中发现的转录起始序列不同于已分类的rhabdovirus病毒。考虑到进化关系、序列一致性和基因组结构,NcNSRV-1较有可能是昆虫rhabdovirus病毒。目前NcNSRV-1病毒未能在实验室种群中长期维持,可能与宿主或传播途径的缺失有关。
其他文献
烟曲霉(Aspergillus fumigatus)对医用三唑类抗真菌药物如伊曲康唑、伏立康唑和泊沙康唑的抗性问题日益突出,是导致侵袭性曲霉病(Invasive aspergillosis,IA)临床治疗失败的主要原因,其抗性来源和相关机制备受关注。为了探究农用三唑类化合物的使用与烟曲霉抗药性之间的潜在联系,本文在确认医院周边环境土壤中抗性烟曲霉存在的基础上,探究了不同种植条件下戊唑醇使用可能导致
双生病毒是一类在全世界广泛发生的植物单链环状DNA病毒。其中菜豆金黄花叶病毒属病毒种类最多,危害最为严重,由其介体昆虫烟粉虱特异性传播。该病毒属病毒根据基因组的不同可分为单组份病毒和双组份病毒。双组份病毒包含两条单链环状DNA分子,DNA-A和DNA-B;单组份病毒仅包含一条单链环状DNA分子。部分单组份病毒伴随有DNA-β,称为β卫星分子。植物介导的菜豆金黄花叶病毒属病毒-烟粉虱互惠共生是造成植
内生真菌是至少生活史的一部分能侵染定殖在健康植物组织中,宿主无明显病症的一类真菌。内生真菌在与植物互作的过程中,产生了许多有意义的生物学功能。首先部分内生真菌的定殖会诱导植物产生系统抗病性,从而抵抗病原真菌、病毒、细菌等的侵害。同时,它产生的一些毒素,可以防止宿主免受食草动物、昆虫的取食。当植物面临非生物胁迫,如旱涝、重金属或高低温等,内生真菌可以通过调控植物的生理生化反应来帮助其渡过不良环境。另
随着测序技术以及宏病毒组(Virome)的发展,越来越多的新病毒被发现。寄生蜂是昆虫中物种最为丰富的生物类群之一,其上也存在着很多病毒。蝇蛹金小蜂(Pachycrepoideus vindemmia Rondani,1875)是蝇类蛹期外寄生蜂,寄主范围广泛,包括果蝇、实蝇、家蝇等,是一种有巨大开发潜力的生物防治资源。本论文针对在蝇蛹金小蜂体内发现的一种新型小RNA病毒RoWV-1展开了系列的研究
水稻是全世界最重要的粮食作物,但由灰飞虱以持久增殖型方式传播的水稻黑条矮缩病毒(Rice black-streaked dwarf virus,RBSDV)严重危害水稻,并每年造成巨大的粮食产量损失。自噬作为一种先天性免疫在抵抗病毒入侵中发挥重要作用,而病毒在与寄主相互博弈过程中进化出逃避自噬或者抑制自噬机制而实现侵染,有些病毒甚至利用寄主的自噬体膜和自噬机制促进其繁殖、扩散。RBSDV侵染能否引
翅多型现象是昆虫表型可塑性的一种重要表现。褐飞虱(Nilaparvata lugens)是一种典型翅二型昆虫,能够产生长翅、短翅两种成虫。长翅型褐飞虱具有发育完全的翅和间接飞行肌,能够长距离飞行,有助于种群扩散;短翅型褐飞虱则具有更强的繁殖力,利于种群在居留地快速繁殖。褐飞虱若虫根据环境条件变化,进行扩散与生殖之间的权衡以维持种群延续。虽然前人以具有多型现象的直翅目、鞘翅目、半翅目昆虫为模型,对组
寄生蜂是一类营寄生生活的膜翅目昆虫,其寄主大部分为鳞翅目害虫。菜蛾盘绒茧蜂Cotesia vestalis是世界性十字花科蔬菜害虫小菜蛾Plutella xylostella的一类优势寄生蜂。其成功寄生需要精准调控寄主的生长发育和免疫,这些功能的实现主要依赖于寄生蜂体内携带的多种寄生因子,包括多分DNA病毒(Polydnavirus,PDV)、毒液、畸形细胞等。其中PDV是稳定整合在寄生蜂基因组上
植物病毒是严重危害农产品安全生产的生物因子,严重影响农产品的产量、品质,造成巨大的经济损失。马铃薯Y病毒属(genus Potyvirus)是植物病毒中最大的属,而芜菁花叶病毒(Turnip mosaic virus,Tu MV)是其中危害较为严重的病毒之一。在植物病毒侵染寄主的过程中,寄主基因能够以不同的方式,调控寄主对病毒的抗性,从而抑制病毒侵染。挖掘、了解这些抗性基因在病毒侵染过程中的作用及
同源异型盒(Homeobox)基因在后生动物中广泛存在,且高度保守。Homeobox基因编码一段约60个氨基酸组成的homeodomain(HD)结构域,具有与DNA特异性结合,参与转录调控的功能。褐飞虱(Brown planthopper,Nilaparvata lugens),隶属于半翅目飞虱科,为不完全变态昆虫,是我国以及东南亚各国水稻种植区的头号害虫。目前,对褐飞虱homeobox基因的研
近些年来,随着基因编辑技术的发展,基因驱动技术在害虫防治领域表现出巨大的应用潜力。CRISPR/Cas9基因编辑技术因为具有精度高、易操作、成本低等优点,目前被广泛用来构建基因驱动系统。本论文利用CRISPR/Cas9基因编辑技术,在模式昆虫黑腹果蝇(Drosophila melanogaster)和农业害虫斑翅果蝇(Drosophila suzukii)中分别建立了安全可控的基因驱动系统。与此同