论文部分内容阅读
镁合金作为绿色工程材料,近年来备受关注。镁锂和镁锆合金在航空和宇航等工业领域具有广泛的应用。本论文在LiCl-KCl熔盐体系中采用熔盐电解法制备了镁锂和镁锆合金,对金属锂和锆的电沉积过程以及制备镁锂和镁锆合金的电解工艺进行了探索。采用循环伏安法、计时电位法、计时电流法和恒电位电解等方法在低共晶组成的LiCl-KCl熔盐体系中研究了Li+分别在钼电极和镁电极上的电化学还原过程。研究结果表明,在熔盐体系的温度为450℃时,Li+在钼电极上的还原是通过一步电子转移反应完成的,并且反应不可逆,Li+的扩散系数为6.68(±0.07)×10-6cm2/s,锂在钼电极上的电沉积过程存在成核极化现象,且成核过程为瞬时成核过程;金属锂在镁电极上析出时存在去极化作用,并通过控制沉积电位制备了不同相组成的镁锂合金。在低温熔融LiCl-KCl电解质体系中制备镁锂合金,优化了电流密度、电解温度和电解时间等电解工艺参数,研究低温条件下制备镁锂合金的最佳工艺条件,并考察了电解装置在进行连续电解实验时的稳定性,试验结果表明采用此工艺实现镁锂合金电解的方案可行。由于金属Zr在镁合金中具有强烈的晶粒细化作用,本文试用熔盐电解法制备Mg-Zr合金。文中采用循环伏安法、计时电位法、计时电流法和恒电位电解等方法在K2ZrF6-LiCl-KCl熔盐体系中研究了Zr(Ⅳ)在钼电极、钨电极和液态镁电极上的电化学还原过程。实验结果表明Zr((Ⅳ)的还原是通过两步电子转移反应完成的,其中间产物是Zr(Ⅱ),锆在钼电极上的沉积过程也存在成核极化现象;Mg-Zr合金存在两种形成机制:(ⅰ)锆在液态镁电极上电沉积形成Mg-Zr合金;(ⅱ)会属Mg还原Zr(Ⅳ)和Zr(Ⅱ)形成Mg-Zr合金。利用熔盐电解法制备镁锆合金,通过研究电流密度、电解温度、电解时间及电解质浓度对Mg-Zr合金中Zr含量的影响,制备Mg-Zr合金并确定了工艺参数,即电解温度为725℃、电流密度为5.66mA/cm2、K2ZrF6的浓度为5 wt.%以及电解时间为1h时,可以使制备的Mg-Zr合金中Zr的含量达到1.55%左右。