论文部分内容阅读
由于电网中非线性器件和设备的广泛使用,电力系统中产生了大量的高次谐波,本文主要研究并设计实现电力系统中电力谐波参数的实时检测。确切掌握电网中谐波的运行状况,有利于防止谐波的危害、维护电网的安全运行。本文首先介绍了当前电力谐波参数检测的快速傅立叶变换方法,FFT算法技术比较成熟、易于实现,但算法本身很难做到同步采样和整周期截断,由此会造成频谱泄漏和栅栏效应,影响谐波检测结果。论文引入加窗插值FFT算法进行修正,对加窗插值FFT算法进行了较为深入的分析,并给出较详细的数学推导计算过程。其次,较详细介绍了电力谐波检测系统的DSP+CPLD硬件平台,通过采用锁相环实现硬件同步采样,保证严格同步和减小频谱泄漏;采用TMS320C6713B浮点DSP实现加窗插值FFT算法的运算,实时检测电力谐波的参数;采用CoolRunner-II系列XC2C512 CPLD控制系统的外围器件。再次,简要介绍系统前端信号调理、数据采集和外围模块硬件设计部分,以及CPLD逻辑控制部分,包括PLL锁相跟踪、ADC数据采集、本地温度监控、LCD液晶显示,以及CPLD与DSP的外部存储器接口(EMIF)数据通信等模块。重点介绍了DSP系统软件设计部分,包括DSP芯片配置、DSP外设初始化、增强型直接存储器访问(EDMA)、乒乓缓冲传输等底层软件设计,以及算法的设计实现。DSP软件开发采用芯片支持库CSL配置外设、方便代码移植,采用DSP/BIOS实时多任务操作系统管理DSP的线程优先级调度,包括EDMA硬件中断HWI、信号处理算法任务TSK等,它们之间通过信号量保持线程间的同步和通信。最后使用Matlab仿真分析了矩形窗(信号截断)和非整周期采样对FFT算法的影响,并分析比较窗函数和加窗正弦信号的频谱,表明Hanning窗或Blackman窗、整周期采样可以有效地减小频谱泄漏。随后在硬件平台上验证了加窗插值FFT算法的正确性和有效性,表明加Blackman窗的FFT插值算法在非整周期采样时仍然具有较高的精度,幅值误差为e-4数量级,相位误差为e-3数量级。仿真及硬件调试结果表明,算法的精度和实时性都能很好地满足电力系统谐波分析和谐波检测的实际要求。