基于SDN的物联网数据聚合研究

来源 :中国计量大学 | 被引量 : 0次 | 上传用户:rrsmy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
物联网设备产生和发送的数据中存在许多重复冗余的部分,传输这些数据降低了网络寿命、增加了网络流量。数据聚合可以减少不必要的数据传输,提高网络传输效率,减少能量与资源受限设备的能耗,延长网络寿命。本文从物联网数据聚合的路由结构和处理算法两个方面进行了以下研究:
  (1)提出聚合网关层,设计了一种基于SDN的物联网数据聚合体系结构和规则算法。对于能量受限的传感器节点,对LEACH算法改进,综合考虑了节点剩余能量和它到网关的距离进行分簇,簇头在SDN控制的等待时间下收集簇内节点发送的数据进行聚合,如果超时未收到数据,则用无偏灰色预测模型对缺失数据预测,对预测数据聚合后再发送到网关节点;对于能量不受限的智能设备,用SDN控制聚合时间,聚合网关对聚合时间内接收的重复冗余的数据进行聚合后再发送到网络层。仿真分析表明,设计的体系结构与普通网关和OF-GW网关的体系结构相比,网络寿命提高了约32.6%,感知层发送到网路层中的数据包量减少了约6.1%~55.1%,设计的规则算法与LEACH算法相比,数据聚合的平均延迟降低了约24.1%,同时避免了数据缺失,提高了数据聚合的准确性。
  (2)选择压缩感知算法作为基于SDN的物联网数据聚合体系结构下的聚合处理算法,但压缩感知聚合后的数据需要使用重构算法才能恢复出原始数据。提出一种基于两次分段弱选择的子空间追踪算法,它不需要预先知道信号的稀疏度,第一次弱选择自适应地选择初始原子候选集,第二次弱选择自适应地从当前原子支撑集中剔除之前可能选择的错误原子,最后通过回溯法从当前原子候选集中选择多个相关原子加入原子支撑集。仿真分析表明,该算法可以在稀疏度未知的情况下实现一维随机信号和二维图像信号的精确重构,且具有较高的稳定性;与OMP算法、SWOMP算法、BAOMP算法、SAMP算法和SP算法相比,均方误差降低了约60.5%~99.1%,峰值信噪比提高了约2.1%~34.3%。
其他文献
从地理领域文本等非结构化数据中抽取实体和关系,为构建地理知识图谱、智能问答等应用提供了重要基础。由于地理领域标注语料资源较少,难以使用深度学习等依赖大规模标注语料的方法,利用知识库中的领域知识对地理语料库进行表示增强,可以有效缓解语料不足的问题。传统神经网络模型在处理一维序列、二维网格数据时表现优异,但不能很好地处理知识库等图结构数据。现有的实体关系抽取模型不能很好地处理语料库中多元实体关系的情况
学位
目前语音合成技术使用大量的来自单个说话人的语料库训练网络模型,以合成特定人的音频信号。面对个性化的实际应用场景,现有的语音合成技术在数据资源和定制周期上存在局限性。多说话人语音合成技术作为语音合成领域的分支,能够以高效利用数据的方式为各种说话人生成符合人类听觉的语音。一般从语音自然度和音色相似度两方面,主观地评判语音合成质量。近年,谷歌提出的从说话人验证到多说话人语音合成的迁移学习方法在语音自然度
物联网设备的普及给人们的日常生活和工作提供了方便,但同时也带来了许多安全风险。近年来,利用固件中的漏洞对物联网设备进行攻击的事件时有发生,使得固件的安全问题受到了越来越多的关注。其中,跨平台的固件漏洞检测是固件安全的一个重要研究方向。由于代码复用现象的普遍存在,导致不同平台上的固件经常受到相同已知漏洞的影响。通过对跨平台的固件漏洞进行检测,可以降低同源已知漏洞对设备所造成的威胁,有助于提升系统的安
学位
现货实例定价方式是一种基于拍卖的虚拟机实例定价方式,它可以帮助云服务提供商有效处理闲置云计算资源,减轻库存压力,因此已在亚马逊弹性计算云、谷歌云和阿里云等国内外主流云服务提供商中得到较为广泛的应用。随着现货实例的逐渐普及,如何制定合理的投标策略成为越来越多云用户面临的关键问题。现有关于现货实例投标策略的研究大多围绕如何在时间约束下最大化用户利益展开讨论,较少关注用户同时面临时间与预算约束的情形,也
学位
汽车的普及在给人们的生产生活带来极大方便的同时,也造成了如交通拥挤、交通安全等一系列的社会问题,近年来兴起的智能交通则有望解决这些问题。道路交通标志是智能交通的重要环节之一,道路交通标志的检测对无人驾驶、辅助驾驶等技术具有重要的促进作用,也引起了越来越多研究人员的关注。传统的交通标志检测算法主要基于交通标志的形状、颜色等外观信息进行,且依赖于通过人工方法进行特征提取。人工提取目标特征不仅有很大难度
学位
随着计算机科学及网络技术为主导的信息科学及产业的飞速发展,诸如窃听、重放、抵赖、信息泄露、非法使用等信息安全问题也日益凸显。相较于传统的信息加密技术,信息隐写技术可以以一种更加隐秘的方式保护重要的信息。信息隐写通常采用冗余量较大的载体完成,例如图像,音频,视频等。文本作为历史最悠久、使用量最大的媒体信息,由于冗余量较小而难以搭载太多秘密信息,但也因此更有研究价值。在本文中,我们以自然语言文本作为隐
随着社交网络、电子商务、移动互联网等技术的发展,各种网络数据迅速增加,互联网上蕴含着大量带有情绪色彩的文本数据。如何对来自不同渠道的短文本进行自动分析和处理己成为急需解决的难题。情绪分析属于自然语言处理领域的一个分支,近年来有许多学者对它进行研究。基于CNN与RNN的短文本情绪分析研究就是通过CNN和RNN相关算法对互联网上面的微博言论、购物评价等短文本信息进行分析挖掘,分析文本中是否包含情绪、情
学位
时空分析方法的发展为处理复杂时空数据集、构建复杂时空模型提供了更多可能。在这一过程中,随着贝叶斯近似计算方法的丰富,贝叶斯框架下的时空数据分析实践也不断增多。  本研究基于时空点过程分析理论,将西北某市P区数字城管系统中累积的城管问题事件抽象为点模式事件,将城管问题事件的产生视为一个非均匀泊松随机过程。利用积分嵌套拉普拉斯逼近(INLA)与随机偏微分方程(SPDE)计算方法在贝叶斯框架下构建时空L
学位
在采集图像时,由于场景光照条件差或者设备的补光能力不足,容易产生低照度图像。低照度图像存在视觉感受差、高噪声、使用价值低(难以辨识图像内容)等问题,所以针对低照度图像增强算法的研究有很大的意义。近年来随着深度学习的火热,以卷积神经网络为主的深度学习方法逐渐取代了传统的低照度图像增强方法成为了研究热门。所以本文主要围绕着基于卷积神经网络的低照度图像增强方法进行研究。  由于目前在低照度图像增强的研究
时间序列一般是指系统中某一变量的观测值按时间顺序排成一个序列。时间序列数据是受系统中其它各种因素影响的总结果,自身反映出了对象的变化特征、发展趋势和运动规律。时间序列有高维时间序列也有单维数间序列,针对不同特性的时间序列数据应使用不同的方法进行研究才可获得预期的效果。本文的研究内容便是研究不同特点的时间序列数据该使用怎样的研究策略。本文的主要研究内容包括:  1)针对单维小样本时间序列数据提出使用