【摘 要】
:
为了解决移动用电设备以及特殊环境下用电设备的供电灵活性、安全性等问题,磁耦合无线电能传输技术(Magnetic Coupling Wireless Power Transfer,MC-WPT)被广泛研究,也给电动汽车提供了一个更加便捷和安全的充电方式。为了实现高效的无线充电,电动汽车动态无线充电(Electrical Vehicle Dynamic Wireless Charging,EVDWC)
论文部分内容阅读
为了解决移动用电设备以及特殊环境下用电设备的供电灵活性、安全性等问题,磁耦合无线电能传输技术(Magnetic Coupling Wireless Power Transfer,MC-WPT)被广泛研究,也给电动汽车提供了一个更加便捷和安全的充电方式。为了实现高效的无线充电,电动汽车动态无线充电(Electrical Vehicle Dynamic Wireless Charging,EVDWC)一般使用相比S-S等基本拓扑更高阶的LCC-LCC拓扑,LCC-LCC拓扑对电容电感参数变化的敏感性比较低,稳定性强,传输效率高,适合大功率应用。但是,LCC-LCC拓扑使用了两个电感和四个电容去进行谐振,而且在实际工程中会在谐振网络前面增加一个LC串联滤波网络进行滤波,这些电感占据了很大的空间,严重增加了工程成本。为了减小补偿电感占用的空间,有人将这几个电感和传能线圈绕制在一起来进行磁集成,这些电感又称为集成电感。还有人利用这些集成电感来形成额外的能量传输通道,来提高耦合机构的功率密度和抗偏移能力。但是这些电感进行磁集成后会产生额外的交叉耦合,这些耦合对原系统的影响规律的研究仍旧缺乏,因此,对进行磁集成后的EVDWC系统进行建模分析并和原系统进行对比分析具有重要的研究价值。本文旨在探究集成电感对LCC-LCC拓扑EVDWC系统的影响规律并设计出一套合适的磁集成耦合机构。对磁集成后的EVDWC系统进行建模分析,研究集成电感产生的耦合对原EVDWC系统谐振特性和传能特性的影响,给EVDWC系统集成电感的设计提供理论指导。经过研究和分析,对于电动汽车这种横向纵向都存在较大偏移的无线充电系统,只能考虑通过耦合机构的设计,尽可能地减小集成电感和传能线圈之间的交叉耦合,让系统更加紧凑的同时不影响原系统的电气特性。然后本文提出了一种田字型结构的集成电感,针对EVDWC系统的发射端和接收端的具体情况进行了相应的设计。最后,本文在Plecs软件平台搭建了磁集成EVDWC系统电路仿真模型,对本文设计的集成电感的可行性进行了验证。在规定的各种偏移条件下,集成电感和传能线圈之间的交叉耦合都比较小,对原系统谐振特性和传能特性的影响非常小。同时搭建了实验装置对磁集成电感的实用性进行了验证,实现了最大3.3k W功率等级的稳定输出,与不使用集成电感的原系统相比基本没有差别。通过仿真和实验验证,证明了本文提出的田字型集成电感对减小补偿电感的空间占用问题具有指导意义和实用价值。
其他文献
随着半导体照明技术的飞速发展,以LED为代表的半导体照明产品已广泛应用于各个领域,为节能减排战略做出了重要贡献。在LED封装生产过程中,其表面可能会产生各种缺陷,直接影响LED封装的寿命和效率。LED封装正趋于微型化、精密化方向发展,传统人工目视检测方法已难以满足高效率、高精度的检测需求。因此,本文旨在设计与实现基于机器视觉的LED封装表面缺陷检测软硬件系统,研究面向多种类、变尺寸的LED封装表面
随着电动汽车的普及,其充电时间长、续航里程短等问题日益凸显。电动汽车动态无线电能传输(Electric Vehicle Dynamic Wireless Power Transfer,EV-DWPT)技术突破了限制电动汽车发展的技术瓶颈,为电动汽车充电难问题提供了有效的解决途径,对于电动汽车的发展具有重要的意义。EV-DWPT系统通常采用分布式短导轨供电模式,然而这种供电模式在导轨切换区域存在较大
随着旋转设备的不断发展,大量特殊领域如雷达供电、风力发电、航空航天、石油钻探等,对旋转设备提出了更高的要求。旋转设备由静止和旋转两部分组成,工作过程中供电端与用电端存在相对转动,需要旋转机构衔接静止和旋转部分。因此,旋转机构成为旋转设备的重要研究方向。传统旋转设备采用接触式滑环进行电能传输,由于静止部分和旋转部分之间物理连接,存在易磨损、易打火、事故率高、更换成本高等缺点,阻碍了旋转设备的发展。无
为满足快速增长的电力需求,微电网这一灵活、高效、清洁的小型供电系统受到了人们的广泛关注。但新能源发电出力的间歇性、波动性以及负载需求的随机性也给微电网的稳定运行带来了新的挑战,针对以上问题本文提出一种双层控制结构的微电网有功功率动态调度与控制策略,上层动态经济调度算法实现发电单元最优参考值的计算,下层控制策略实现发电单元的输出功率跟踪最优参考值。针对微电网动态经济调度问题,结合预测校正内点法和拉格
电机在工业化进程中有着举足轻重的地位,而电机轴承作为一个故障多发的零部件,损坏时很容易带来经济损失和人员伤亡等问题,传统的电机轴承故障诊断方法对从业人员的专业知识和经验要求较高,对复杂设备进行故障诊断的难度较大。近年来,基于深度学习的电机轴承故障诊断方法得到了学术界和工业界的广泛关注,但由于现实工况多变、电机轴承参数不同、故障样本较少等原因,基于深度学习的故障诊断模型面临着应用过程中识别准确率下降
随着计算机硬件与算法的发展不断取得新的突破,自动驾驶汽车的落地也离我们越来越近,未来自动驾驶与人工驾驶不可避免的混合将会给我们现有的道路基础设施带来新的问题与挑战。路段阻抗函数能很好地反映路段出行成本与流量的变化关系,同时也是交通分配的基础,但是在自动驾驶车辆与传统人工驾驶车辆组成的混合交通中,以往的路段阻抗函数未能考虑混合交通流中的自动驾驶车辆渗透率与专用车道等因素对道路通行能力的影响,难以准确
对汽车周围一定距离下的环境感知是自动驾驶汽车实现路径规划的基础。自动驾驶汽车大部分依赖于激光雷达、摄像头和毫米波雷达融合的得到的结果,以实现高传感器冗余,高可靠性的,高安全性的目标。鉴于相机的低成本,感知信息丰富,基于单个图像实现准确的目标三维信息估计变得越来越重要,而现在3D目标检测在被遮挡或者截断场景难以准确的估计目标的三维信息。本文基于自动驾驶场景下的单目3D目标检测算法进行了深入研究,做出
随着磁耦合无线电能传输(Magnetic Coupled Wireless Power Transfer,MC-WPT)技术的进步和发展,该技术开始在各种轻量化、小型化的现代用电设备中广泛应用。但是中小功率无线供电系统通常没有拦截装置,当区域内存在异物时,系统输出功率和效率存在跌落的风险,部分金属甚至会因严重发热导致安全隐患。所以随着无线供电技术在中小功率系统中的推广和应用,异物检测技术也越来越受
快速路移动瓶颈是一种常见的交通瓶颈。相关研究表明:移动瓶颈的存在会对道路的运行效率产生负面影响,而移动瓶颈的随机性和移动性增大了控制的难度。随着智能汽车技术的发展,出现了网联自动车(Connected Automatic Vehicles,CAVs)与网联人驾车(Connected Human Vehicles,CHVs)构成的异质交通流。网联自动车的加入增加了交通系统的复杂度,但同时也为解决交通
在使用汉川XK714D数控铣床加工产品的过程中,传统PID控制的伺服进给系统受到滚珠丝杠侧的切削力、摩擦力等非线性因素影响,降低了控制系统的动态特性和鲁棒性,导致了实际输出与控制指令间存在偏差。针对此问题,本文创新性的将永磁同步电机与滚珠丝杠组合而成的伺服进给系统作为整体进行研究,借用自抗扰理论中扩张观测器能观测伺服进给系统的总扰动,非线性误差反馈控制率能消除伺服进给系统的总误差思想,设计了转速电