【摘 要】
:
超表面是一种二维的超材料,不仅具备三维超材料的优势,而且在集成度、制备复杂度以及材料损耗方面较后者更有竞争力。通过人为设计其结构图案,超表面可以实现超越天然材料的的性能和功能。结合日趋成熟的微纳加工技术,超表面器件可以实现从可见光到太赫兹(THz)波段的光调控,为开发THz技术所急需的高性能功能性器件带来了巨大契机。体狄拉克半金属(BDS)作为一种“三维石墨烯”材料,具有极高的载流子迁移率以及电导
论文部分内容阅读
超表面是一种二维的超材料,不仅具备三维超材料的优势,而且在集成度、制备复杂度以及材料损耗方面较后者更有竞争力。通过人为设计其结构图案,超表面可以实现超越天然材料的的性能和功能。结合日趋成熟的微纳加工技术,超表面器件可以实现从可见光到太赫兹(THz)波段的光调控,为开发THz技术所急需的高性能功能性器件带来了巨大契机。体狄拉克半金属(BDS)作为一种“三维石墨烯”材料,具有极高的载流子迁移率以及电导率可调的特点,在太赫兹主动超表面器件的开发中具有极大的优势。而在超表面的工作原理方面,连续域束缚态(BIC)因其具有的无穷大品质因子以及场增强效应而在光子学领域大放异彩,基于这一模式制备THz超表面将进一步提高器件的性能。本文主要针对对称保护型BIC的机制及应用进行了研究,设计了两种工作于THz波段的基于对称保护型BIC的BDS超表面。本论文的主要工作如下:(1)利用随机相位近似方法计算了BDS的纵向动态电导率,并根据双带模型得到了BDS的等效介电常数。基于格林函数展开的方法对对称保护型BIC进行了理论分析,得出了其品质因子与不对称参数之间具有平方反比的结论,并用法诺(Fano)公式描述了准BIC的透射率。(2)基于对称保护型BIC设计了一种双分裂环形谐振器构型的BDS超表面。该超表面支持极化依赖的对称保护型BIC模式,斜入射条件下根据极化方向的不同的方式分别BIC退化为电磁诱导透明(EIT)型准BIC和Fano型准BIC。两种类型的准BIC分别可以解释为两个反向传播的波导模式之间的耦合以及两个相位稍微不匹配的磁偶极子模式的耦合。另外,打破结构本身的对称性也可以使BIC退化为准BIC。x极化下因对称破缺而产生的准BIC可以解释为磁四极子模式与磁偶极子模式的耦合,y极化下则可解释为两个磁四极子模式的耦合。此外,通过调节BDS的费米能,实现了对准BIC共振频率的调控。(3)设计了一种同样支持对称保护型BIC的非对称椭圆台型BDS超表面。根据其对称性破缺方式的不同,分别研究了同长轴型和同短轴型椭圆台超表面所支持的两种准BIC。通过对它们的透射谱、表面电场和面电流矢量分布图的分析,两种准BIC的形成均可解释为对称性破缺所导致的沿电场极化方向的净电偶极矩的产生。之后改变BDS费米能,同样实现了对两种构型的超表面所支持的准BIC频率的调控。最后探究了该超表面在折射率传感器方面的应用潜力,其传感灵敏度达到了87.8/RIU。
其他文献
低维体系是当今材料科学和凝聚态物理领域关注的焦点之一。一维材料具有比二维材料更为显著的量子限域效应,这一特点也赋予了其更为突出和优异的物理化学属性。过渡金属硫化物纳米线作为典型一维结构,与单纯半导体性的层状2H相过渡金属硫化物不同,其既可为半导体性,亦可呈金属性,其电子性质取决于材料中硫族元素的种类,利用这一特性有望实现全过渡金属硫化物纳米线电子电路。系统研究过渡金属硫化物纳米线的物性可为低维材料
混沌控制作为混沌应用研究重要的课题之一,一直以来都受到广泛关注。混沌控制主要指通过某种控制策略有效地影响混沌系统的动力学行为,使其发展成为实际所需要的状态。从实现目的上,混沌控制的研究主要分为混沌增强和混沌抑制。混沌增强主要指增强非线性系统的混沌强度令信号变得更加无序,因此混沌信号可被用于加密图像或音频加密,广泛用于安全通信等领域;而混沌抑制主要指削弱或消除系统中的混沌现象,使其不会对某些实际工程
氨作为一种重要的化工产品已广泛应用于农业及新能源等领域。传统Haber-Bosch方法合成氨需消耗大量化石能源,同时产生大量二氧化碳,会导致严重的能源与环境问题。因此研究绿色制氨新技术具有重要的理论及实际意义。电催化氮气(N2)还原(eNRR)制氨是一种在电催化剂作用下直接将N2电还原为氨的绿色制氨新技术,具有反应条件温和及零碳排放等优点,因而备受关注。不过eNRR制氨仍面临氨产率低及法拉第效率差
随着社会科技水平的发展,湿度传感器已被广泛应用于工业以及日常生活当中。传统湿度传感器的湿敏机理大多是基于表面吸附机制,在低湿环境中质子跳跃难以受到微量水分变化的影响,导致基于表面吸附机制的湿度传感器难以实现低湿探测。湿致变色材料对水分子的体吸附行为能够导致材料本身的晶体结构发生变化,使其在湿度传感器领域得到了广泛的关注。在本工作中以湿致变色材料溴化镍(NiBr2)作为研究对象,对NiBr2的变色行
综合能源系统(integrated energy system,IES)可实现电能、天然气能源和热能等多能源的协同供应,有效提高分布式可再生能源的就地消纳能力,在满足用户需求的前提下减少对外电网的依赖,得到了广泛的研究与关注。电-气区域综合能源系统由电力系统、天然气系统及能量中心构成,实现区域范围内配电网、配气网、区域能量中心及其它区域能源系统之间的互补支撑。确定性多能流计算是IES分析与运行的重
中子星是宇宙中致密星体的一种,拥有独特的性质。它的极端物理条件如高密度、高温、高磁场、快速旋转等可以帮助我们更好地了解致密星体的性质,同时也可以用来验证现代物理的诸多理论。对中子星双星系统的研究,如系统的轨道周期、偏心率、伴星质量等,能够帮助我们了解脉冲星的起源及演化。论文主要研究了极亮X射线源的磁场和吸积过程,以及毫秒脉冲星的形成机制及演化特征。论文大致框架分为四个部分。第一章简要介绍了在中子星
随着信息技术的飞速发展,声音事件识别技术近年来受到了广泛的关注,该技术在音频监控与医疗诊断等领域中具有重要价值。声音事件识别过程分为特征提取和分类识别两个部分,在特征提取方面,通常使用声谱图,它是声音信号的“可视性语言”,可同时体现声音信号的时域和频域信息。在分类识别方面,通常使用卷积神经网络(Convolutional Neural Network,CNN),它具有强大的特征表达能力,但不能有效
光电探测器(PD)作为一种重要的光电器件原件,在传感、成像和自动化控制等领域有着重要的应用。近年来,集成化和功能化使得高性能、小型化、柔性等成为光电探测器的主要发展趋势。金属硫化物得益于其先天的优异光、电学特性以及可控的形貌、结构和组成等优势,在新兴光电探测器领域变得越来越重要。但是传统的金属硫化物存在光捕获能力差、光响应范围小等问题,此外,材料发生相对位移时会导致其微纳结构被破坏,这限制了其在高
中子星低质量X射线双星系统中的毫赫兹准周期震荡信号(m Hz QPO)起源于中子星表面的亚稳定核燃烧,因此,研究m Hz QPO对深入认识中子星表面的核燃烧过程具有重要作用。目前,观测上已累计一定数量的m Hz QPO观测数据。本文对其中两个低质量X射线双星中的m Hz QPO及其倍频谐成分进行分析,旨在研究它们的观测特征和性质。在本文中,我们基于RXTE卫星的数据,首次对4U 1636-53中的
近年来,忆阻器作为一种新型的非线性无源两端电气元件,凭借其独特的记忆特性和纳米结构,在非挥发性随机存储器、人工神经网络、混沌电路以及其他领域中具有极其广泛的应用前景。然而,由于制造纳米器件技术难度大、成本高,目前忆阻器还仅停留在实验研究中,无法大规模批量生产。忆阻器的SPICE模型通常是采用电阻、电容和电感等无源电子元件和受控源来构造。本文根据忆阻器的物理特性建立了忆阻器的数学模型和物理模型,在C