论文部分内容阅读
在处理连续和离散奇异摄动问题时,系统的两时标分解是一个重要的性质。通常系统会出现退化,特征值会出现快速变化,这对于控制问题的分析会产生困难。为了解决这些复杂的问题而提出的奇异摄动方法,过去四十年已经证明该方法的有效性。最近,对于连续型和离散型奇异摄动控制问题已经引起了许多学者的关注。本文中主要研究一系列不确定奇异摄动系统的鲁棒稳定和镇定,鲁棒H无穷控制以及基于干扰观测器的鲁棒控制问题。我们发现了一些新的结果和新的问题。这篇文章主要研究如下问题。首先,研究具有干扰的不确定奇异摄动系统关于干扰的ISS稳定和镇定问题。通过不动点原理,首先提供了一个线性矩阵不等式的充分条件使得原系统是标准型的奇异摄动系统。然后,利用降阶技巧,两时标分解方法获得系统的快慢子系统,并使其快慢子系统分别是ISS。基于极限系统(即由快慢子系统构成的对角化系统)的ISS性质,给出一个充分条件,使得具有小参数的整个奇异摄动系统具有ISS性质。倘若系统是不稳定的,为了对充分小的参数,通过状态变换设计控制律使得相应的闭环系统是鲁棒ISS的。此外,通过新的计算方法估计了小参数的上界。其次,对于具有干扰和不确定的奇异摄动系统的H无穷分析与控制是通过快慢子系统系统地来执行的。利用广义二次稳定的概念,通过快慢子系统的广义二次稳定来获得整个奇异摄动系统的广义二次稳定并获得H无穷的动态分析。在这一节里,提出矩阵不等式的充要条件使得对于可允许不确定性参数范围内的极限系统是广义二次稳定,同时它在[0,∞)之上具有H无穷动态水平。基于获得的这个极限系统的结果,可推出原奇异摄动系统也是广义二次稳定的,并且在[0,∞)之上H无穷范数小于预先给定的正数γ。倘若快慢子系统本身是不稳定的,我们可用状态反馈来设计一个控制策略使得对所有可允许的参数不确定性,相应的闭环系统是广义二次稳定。这不仅导致当占→0时系统行为丢失的情况不会发生,而且对于某些特定值期待的二次稳定性也可以保证,并且不受干扰的影响。最后,对于一类不确定奇异摄动系统,通过基于关于干扰观测器的控制来研究改善其干扰抑制的方法。该课题已经在控制和工程领域内得到了极大关注。对充分小的ε>0,通过选择合适的Lyapunov存储函数,证明了其有界范数水平在无穷大水准范围内的不确定性闭环奇异摄动系统的稳定性。