论文部分内容阅读
论文以某小型雷达天线伺服控制系统的研制为背景,论述了无刷直流电动机驱动器的研制过程。本文根据项目对功能和性能的要求,在满足项目小型化设计的前提下,完成了以DSP为控制核心的无刷直流电动机驱动器的硬件电路设计和伺服软件开发,实现了电流、速度双闭环控制,且具有霍尔相序自整定功能。最后通过单板调试和系统联调,使驱动器满足了系统要求的功能和性能指标要求。具体完成工作如下:(1)根据雷达伺服控制系统开发背景,在雷达的结构设计和选定的电机型号基础上,从分析驱动器需求入手,具体化驱动器功能,完成了无刷直流电动机驱动器的总体方案设计。(2)对电动机和驱动器进行了建模和仿真分析。对直流无刷电动机进行数学建模,根据选用电动机的实际参数,使用MATLAB/Simulink对电机及其双闭环控制系统进行了仿真设计,调节PID参数,分析系统性能,为驱动器设计和调试提供理论依据。(3)论述了驱动器硬件电路的设计过程。论文介绍了驱动器的功能和接口电路以及外形结构,设计了驱动器的DSP电路,通信接口电路,霍尔信号接口电路,隔离光耦电路,温度检测电路,电机驱动电路,ADC采样电路和电源电路。(4)论述了驱动器软件的开发过程。论文介绍了控制算法,对软件需求进行了分析,设计了驱动器软件的总体框架,开发实现了软件的伺服控制算法,异步/同步串口通信,DI/DO接口,温度检测,驱动控制和ADC采样功能。(5)对驱动器开发过程中涉及的关键技术进行了研究。为解决驱动器和电动机连接的线序混乱问题,为驱动器开发了霍尔相序自整定功能,实现了电机驱动器任意连接的自适应调整。为保证电流采样信号的质量,在分析采样流程的基础上对DSP采样时机采取了调整优化措施,消除抖动减小干扰,提高了采样数据的可靠性。(6)完成了对驱动器的总体调试。对驱动器单板进行了硬件测试和软硬件联合调试,验证了驱动器的功能和性能指标,然后将驱动器接入伺服控制系统进行联合调试,验证驱动器满足了设计要求。