论文部分内容阅读
飞行安全性是衡量航空系统先进程度的最重要标准,也是人为因素设计及其适航符合性验证的主要目标。人因意外是导致飞行安全事故的最主要原因之一,而人因意外无法从根源上加以杜绝的根本原因在于对人机工效状态空间的认识不够充分;人机与环境系统及飞行任务诸多方面的不确定性使人机工效状态空间极其庞大、复杂;因此,为了完成在飞行安全、飞机性能、机组绩效等方面的人为因素设计与验证,为了可持续地促进飞行系统的自动化扩展及安全性增强,需要探索一整套科学的解决方案,以获取足够的人机工效状态空间研究数据样本,推进基于人机工效状态空间的人为因素研究,促进计算人因与工效学的发展并推广其应用。人为因素设计与验证问题可以通过面向科学计算的人机与环境复杂系统建模与仿真转化为人机工效状态空间的事实与逻辑问题。对人机与环境复杂系统演变发展的模拟与仿真旨在再现飞行机组、飞机系统、飞行环境、飞行任务等方面的飞行条件、飞行状态、飞行性能的动态演进;演进的结果为人机工效状态空间中的一条高维曲线,也是人机工效状态空间的一个数据研究样本。人机工效状态空间包含交互与评估两个维度的基础信息数据;第一个维度标记飞行系统各层次的构型配置及各动态过程的交互事件;第二个维度标识飞行安全、飞机性能、机组绩效及飞行系统广义评价指标的量化测度。基于人机工效状态空间的人为因素研究包括四个层次的信息算法;第一个层次为基于人机工效大数据的统计建模;第二个层次为基于数据统计模型的因果推断;第三个层次为基于数据统计模型的人因反演;第四个层次为基于数据统计模型的正交实验设计。具有前瞻性的航空人为因素设计与验证能为飞行系统控制及航空系统工程中的协调与决策提供科学依据。本文就上述主题展开了全面、深入的理论与计算研究,具体的工作分为四个部分:首先,我们从方法论的角度探讨基于飞行安全调和测度的人为因素设计与验证解决方案,从方法体系、理论体系、技术体系、工具体系四个方面阐述面向科学计算的人机环智能系统建模与仿真及其在人为因素设计与验证中的作用。在明确了人为因素设计与验证这一科学问题之后,我们探究了飞行系统及人因交互的异构性,探究了科学计算及虚拟工程的适用性,探究了以人为中心的样机设计与制造,探究了多粒度合成飞行域模型、多层次异构域交互、多目标评估的统一表示,探究了人因与工效学问题的研究广度、深度、跨度,并据此提出了通过面向科学计算的人机与环境复杂系统建模与仿真将人为因素设计与验证问题转化为人机工效状态空间的事实与逻辑问题的可行性解决方案。然后,我们从大数据获取的角度探讨基于人机环智能系统建模与仿真的人机工效状态空间研究样本生成方法,从基于任务的人机耦合策略模型、飞行动力学的不变张量模型及基于有限体积法的计算空气动力学、面向飞行任务描述及飞行测试规划的飞行场景、飞行安全的内禀因素及调和测度、飞机性能的无量纲约简、飞行品质及机组绩效的客观评价、航空广义评价指标的变换域测度、全数字快速计算平台的分布式部署八个方面阐述人机环智能系统的复杂人机交互及其再现。在完成任务时,人类通常会期待最好的结果,做好最坏的准备、保证正常的绩效。基于任务的人机耦合策略模型以多特征模式及其结构化实现为独特视角,以解决问题计算序列及其逻辑与算术深度为主要原则,以最优控制、鲁棒控制、自适应决策为主要方法,从复杂性、自适应性、不确定性各层面模拟人类的能力及特征。飞机模型是人机耦合策略模型的操控对象,飞行动力学的不变张量建模及矩阵编码便于飞机模型的计算机仿真,也便于人机与环境复杂系统仿真度与可信度的提高。飞行场景以参数形式表征飞行任务及飞行条件的构型配置;其中,飞行任务的航段组成及衔接描述信息主要面向人机耦合策略模型,飞行条件的数据窗口及数据项规划信息主要面向适航符合性验证。及时察觉并准确评估正在迫近的危害是安全防范的根本。飞行安全性的检测涉及各类飞行事件及评价准则,且难以客观定量分析,检测结果也难以有效利用。我们将安全要素归结为三个内秉因素,并将其集成于统一的调和测度机制,使飞行安全性可借助于概率测度客观定量地加以测评,甚至预测。飞行性能的无量纲约简有助于将各种复杂飞行情况转化为内秉安全因素。通过性能参数的标准化及合理分组,无量纲飞行性能既便于在客观的环境中施加检测,又能准确地反映不同飞行环境及状态下的实际飞行性能。我们尝试在虚拟环境中实现对人-机系统的主观评价,并将其作为飞行品质及机组绩效的客观评价。鉴于飞行品质及机组绩效的评判是一个协同验证、多重决策与反馈控制的过程,我们从协同学习与预测控制的角度,在集成认知框架下的人机耦合策略模型中内嵌评价飞行品质及评估机组绩效的内省能力。人为因素研究涉及诸多抽象概念属性的主观评价。通过类比流体力学中的传输现象及传输属性,我们尝试将广义评价指标的相对概率测度及定量分析推而广之。基于面向服务构架的分布式计算平台在计算复杂性、分布性、并行性、开放性和可扩展性等方面全面支持了人机与环境智能系统建模与仿真,是人为因素设计与验证的科学计算及研究平台。接下来,我们从大数据计算的角度探讨基于人机工效状态空间的前瞻性航空人为因素研究方法,从人机工效大数据分层布局、人机工效大数据统计模型、人机工效大数据因果推断、人机工效大数据人因反演、人机工效正交实验设计五个方面阐述数据驱动及面向问题的人机工效大数据研究方法。混合效应及因果协变模型、Bootstrap参数随机化估计算法、拟合优度框架下的因果关系存在性判断算法、潜在结果框架下的因果效应显著性评估算法、人因反演响应核的最佳统计估计算法、人机工效状态子空间的渐进逼近算法等成果全面推进了基于人机工效状态空间的航空人为因素研究。最后,我们从系统控制与系统工程的角度探讨基于科学计算的航空人为因素设计与验证方法在飞行系统的自动化扩展及安全性增强方面的应用前景,并特别关注飞行安全调和测度在飞行器系统控制中的反馈作用、人为因素设计与验证在航空系统工程中的前馈作用。