论文部分内容阅读
很多物理现象都可归结为各向异性界面问题,例如包含各向异性渗透率的油藏问题和地下水的流动问题,期权定价等涉及混合导数(各向异性)和自由边界的金融数学问题,如晶体生长和Hele-Shaw流动及Stefan移动界面问题等.对于这类问题,表征不同介质性质的系数是不连续的,其解及导数可能是非光滑的,甚至不连续.因此,计算各向异性界面问题的高精度数值解具有重要意义,且富有挑战性.如果使用标准有限元方法,很难保证数值解在界面附近或界面上的精确度.如果采用标准有限差分方法,由于混合导数项的存在,稳定性和收敛性分析较困难.本文对各向异性椭圆界面问题和各向异性抛物界面问题提出了几类基于Cartesian网格的有限元-有限差分混合方法.第一章,介绍了各向异性界面问题的研究背景和意义,并对各向异性界面问题的数值方法研究现状进行了综述.本文主要对各向异性椭圆和抛物界面问题研究基于浸入界面方法的有限差分格式,因此,介绍了两类问题的控制方程,且着重介绍了浸入界面方法的基本思想和实施过程.本章的最后介绍了本文的主要工作.第二章,对二维各向异性椭圆界面问题提出了一类有限元-有限差分方法(finite element-finite difference method),主要思想是:在远离界面的规则节点上使用有限元方法离散,相应部分离散矩阵具有对称正定性;在界面附近的三角单元上(不规则节点)构造满足离散极值原理的有限差分格式,且相应部分离散矩阵是一个M-矩阵.基于有限元理论和有限差分方法的比较定理,对新方法建立了误差估计.并且给出了一个计算解在界面上来自界面两侧的法向导数的二阶精度插值方法.最后,数值实验验证了新方法的准确性和有效性.第三章,针对一般的三维各向异性椭圆界面问题提出了一类在无穷范数下具有二阶精度的数值方法.所求解的问题是解及其导数、系数和源项在包含一个或多个任意光滑界面的区域内具有有限跳跃的问题.该方法是二维有限元-有限差分方法的推广,但在方法的构造、实现和收敛性分析方面存在较大差异.由于控制方程和界面跳跃条件在局部坐标系下不具有形式不变性,因此,推导三维问题的界面关系是难点之一.在远离界面的节点上,采用离散矩阵为对称正定的有限元方法;在内部被界面穿过的不规则单元上构造满足离散极值原理的有限差分格式,确保相应部分离散矩阵为M-矩阵.建立一类在无穷范数下具有逐点二阶精度的精确界面方法,确保在界面附近得到高精度的数值解.最后进行了收敛性分析.数值算例验证了收敛性分析的有效性.第四章,对带有移动界面的各向异性抛物界面问题提出了一类具有二阶精度的Cartesian网格方法.在对空间方向的离散中,采用二阶有限元-有限差分方法,保证离散矩阵中相应于规则节点的部分是对称正定的,而相应于不规则节点的部分是一个M-矩阵.时间方向上的离散,建立一类修正Crank-Nicolson方法.数值实验说明数值解具有二阶收敛性.第五章,对各向异性椭圆界面问题提出了一类增广有限元-有限差分方法,其主要思想是将各向同性界面问题的增广浸入界面方法推广到各向异性界面问题.引入两个增广变量(分别是界面上的一阶和二阶法向导数的跳跃),将原问题简化为由三个偏微分方程组成的方程组.对于第一个控制方程,采用第二章中对规则节点提出的基于有限元离散的七点差分格式,仅需要在离散方程的右端项中增加一个修正项.修正项与跳跃条件在两个坐标轴方向的分裂形式有关,且通过差分格式沿三个方向进行修正得到.另两个方程是仅定义在界面上的增广方程,二者均使用基于IIM的插值方法离散,并采用GMRES方法进行求解.数值实验验证了该方法的有效性.第六章,对一维Sturm-Liouville边值问题提出了两个简单的高阶紧致有限元方法.该方法的主要思想是使用插值误差估计与控制方程的源项消除截断误差中关于h的低阶项.从而,通过简单的后验误差分析或对线性和二次基函数的修正,使有限元解在L2范数和H1下(或能量范数)得到更高阶的精度.数值实验验证了理论分析的有效性.