跨任务主动迁移学习研究

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:taicangliliang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着数据规模和计算资源的快速增长,机器学习在理论和实践两方面都取得了长足进展。然而,在许多真实场景中,目标任务中的标注样本非常稀缺,难以学得高效模型。迁移学习通过利用其它相关任务的知识提高目标模型泛化性能,是克服这一难题的重要途径之一。然而在许多现实应用中,由于任务相关性的不同,现有迁移学习方法难以稳定地提升模型效果。同时,往往仍需要较大规模的标注样本进行迁移学习。针对上述挑战,本论文开展跨任务主动迁移学习研究,主要取得以下成果:·针对任务相关性较弱时迁移效果不稳定的问题,提出了基于预抽取基模型的迁移学习算法。该方法以基模型集合作为跨任务共享知识结构对目标模型实施有偏规则化,实现了从辅助模型到目标模型稳定有效的知识迁移。同时,我们分析了提出算法的泛化误差上界,在基模型有效抽取的条件下泛化误差将以O(1/n)的速度收敛到经验误差。实验结果也表明提出算法相对其他模型迁移算法更能稳定的提升目标模型效果。·针对模型迁移场景中辅助领域知识不足的情况,提出了联合基模型主动迁移学习方法。该方法进一步利用目标域模型进行知识迁移,提高了对目标域样本的利用率;同时为了补全目标任务缺失的监督信息,通过对迁移学习任务的知识分解,提出了针对迁移场景进行知识补全的样本查询策略。在两个常用图像数据集上的实验结果验证了提出算法的优越性。·针对数据分布对齐难以有效获得跨任务信息的问题,提出了基于分类后验对齐的主动迁移学习方法。该方法设计了基于后验概率分布适配的目标模型正则化项,同时结合分布适配的学习目标,提出了相应的主动查询策略。在多个数据集上的实验验证了后验对齐对于迁移学习的有效性。
其他文献
期刊
特征选择是模式识别与数据挖掘的关键问题之一,它是削减假设空间大小、降低数据维度的重要方法。随着信息技术的极速发展,获取完整的有标记数据集变得更加困难,实践中常常需要处理部分标记信息缺失的数据集。半监督特征选择即是应用于上述半监督学习场景的特征选择技术,可以同时利用有标记数据和无标记数据进行特征选择。它一方面可以挖掘全体数据样本的结构、分布信息,另一方面也可以利用有标签样本数据标签提供的类别信息。不
学位
在传统机器学习研究中,学习对象仅由一个类别标记来描述其语义信息。在许多实际应用中,学习对象往往与多个类别标记相关联。多标记学习是解决该类任务的一种学习框架,并已成功地应用到了许多实际任务中。在多标记学习的实际任务中,精确标注对象的多个标记往往代价高昂且异常困难。更高效的标注方式是标注者仅粗略地赋予每个对象一个候选标记集合。该候选集包含数目未知的相关标记,并且往往掺杂着一些不相关的标记。这种方式降低
学位
在众多的室内定位技术中,基于图像的定位技术有很大的应用前景。然而基于图像的室内定位技术目前存在一些局限。首先基于图像的定位需要大量的计算和存储资源,不能部署在计算和存储资源有限的移动端。而部署在服务器端,网络延迟或不可用将导致用户无法获得位置信息或产生较大的定位延迟。其次基于图像指纹的定位方法构建和维护图像库需要消耗大量的成本。为了克服基于图像的室内定位方法中存在的限制,本论文提出了一种实时性和轻
学位
近年来,随着4G/5G蜂窝网络和智能手机的普及,各种新兴的移动视频应用(如抖音)的使用量迅速增加。根据思科的报告,全球移动数据流量在过去几年增长迅速,其中移动视频流量占了一半以上。在日益拥挤的无线网络中,流畅和高质量的视频可能无法保证,进一步可能会导致移动用户体验质量降低。因此,在有限的无线网络资源下,如何提高视频质量和用户体验是一个很大的挑战。目前,蜂窝网络正朝着小基站的异构性和密集部署的方向发
学位
随着5G网络的不断推进,无线网络物理层监测在网络运营中发挥着越来越关键的作用。同时,无线信号地图,作为一种分析网络状态的有效方式而备受关注。在构建无线信号地图时,感知区域广且需要长时间更新,传统方式费时费力,已无法满足此应用的需求。而群智感知系统在效率与成本上更具优势,成为了构建城市级无线信号地图的最佳选择。在设计群智感知系统时,通常以数据质量和感知成本作为主要依据。本文主要研究了构建无线信号地图
学位
目前,深度生成对抗网络(GANs)已经成为人工智能领域研究热点之一,其在图像,语音,自然语言处理等基础领域都有着广泛的应用。但是生成对抗网络一直存在着训练不稳定和模式坍塌两大缺点。为了解决这两个问题,研究人员将Wasserstein距离引入到生成对抗网络中代替失效的相对熵度量,并且引入Wasserstein距离的对偶形式来近似计算分布之间的距离,从而在GANs模型架构中引入了评函数的结构,以此提出
学位
通过国有企业中国化工集团并购瑞士先正达典型案例,分析双方并购达成动因,对并购前存在的估值定价风险、并购中存在的支付风险和融资风险及并购后存在的整合风险进行研究分析,提出充分了解被并购方,借助专业第三方机构合理估值;避免单一支付方式,选择有利汇率节点;优化企业融资结构,保证融资渠道多样化;强化资源整合能力,促进整合方案科学化等与各项风险相对应的防范措施。
期刊
人脸表情能够传达重要的非语言信息,是情绪的直接体现。学会识别表情就是学会了人际交往的重要技巧,可以帮助了解对方的意愿、健康状况、情绪波动、好恶情况等等。因此,如果计算机能自动识别人脸表情,那就可以被广泛应用于生活中的各个方面,如人机交互系统、互联网教育、虚拟现实、智能监控、广告的精准推送、疾病的预防、紧急危害事件的预测等。目前在实验室场景下的人脸表情识别技术已经达到很高的准确率。但这种技术若是应用
学位
近年来,深度强化学习已经在游戏人工智能,自动控制等领域取得了很大的成功。然而,现实世界中许多任务场景包含多个智能体。“中心训练-分散执行”框架由于其结构简单并且优化效率高,逐渐成为求解多智能体强化学习问题的主流算法。本文首先对当前对强化学习算法和多智能体强化学习算法进行综述,尤其对多智能体强化学习中存在的问题进行分析。之后针对“中心训练-分散执行”框架下的协作多智能体强化学习算法,在理论框架,中心
学位