微纳米尺度通道内气液两相流体的稳定构型及流动行为调控研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zdh313
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
含液微纳米通道在自然界中普遍存在,例如土壤和岩石的孔隙、植物叶脉以及人体的血管等等。同时,由于微纳米通道具有优良的流体传输特性,人工制备的微纳米通道在机械制造、电子科技、生物工程等领域得到了广泛的应用,而承载流体的微纳米通道亦成为现代工业微型化、精密化发展的重要支撑。鉴于通道中的流体并不是单一存在的,通常含有气体等其他物质,了解微纳米尺度通道内气液两相流体的传输行为对于相关器件的设计、优化和制备至关重要。在微观尺度下,流体表现出与宏观尺度截然不同的行为规律,本文从单相流体入手,在考察了微纳米通道中纯流体的基本性质和调控关系后,以此为对照进一步探究了气液两相流体在微纳米尺度通道内的流动行为和响应规律。在单相流体方面,采用分子动力学方法,模拟了水在不同微纳米通道中的泊肃叶流动以及光滑壁面上的静态、动态润湿现象,揭示了流体粘性、滑移长度等性质随固-液相互作用等因素的变化规律。模拟结果表明,流体的密度和应力分布在固液界面处出现明显的震荡区域,依据此波动确定了固液界面的边界层厚度并计算了此区域中流体的粘度,发现界面粘度明显高于流体体态粘度并与固-液相互作用呈现出单调递增的关系;基于液滴静态接触角给出了流体界面粘度的表达式;通道属性相同时,较强的壁面润湿性能会导致较小的滑移长度,进一步揭示了壁面润湿性与Navier滑移长度之间的控制关系。在气液两相流体方面,基于分子动力学方法研究了水和氩气组成的气液两相流体在微纳米尺度通道中的泊肃叶流动,计算了流体的密度、速度和滑移长度等基本性质,揭示了其对三相间相互作用的响应规律,总结了边界处纳米气泡大小和形态的变化规律。结果表明,粘附气泡壁面处流体的密度峰值随着气-液/固-液相互作用的增加而升高,而相应的流体速度和滑移长度则呈现出相反的变化规律;流体在粘附气泡壁面处的Navier滑移长度均高于单相流体的滑移长度,表明边界处的气泡可以增加流体的滑移长度,提高通道中流体的传输效率。壁面处纳米气泡的大小和铺展直径均随着气-液/固-液相互作用的增加而减小,且流体流动速度对纳米气泡形态的维持存在一定的影响。综上所述,本论文基于分子动力学方法研究了微纳米通道中单相流体和气液两相流体的基本传输性质和流动行为,揭示了流体粘性和滑移长度等相关性质随固-液-气相互作用的变化规律,阐明界面气泡的存在可以起到提高输运效率的效果。研究成果增进了对微纳米尺度下多相流体基本性质和输运性能的认识,并为基于气相减阻以提高微纳米通道传输效率的工程应用提供从底层出发的科学依据和数据支撑。
其他文献
拓扑优化通过寻找设计域内的最优材料布局,来获得新型优质结构构型,已成为结构创新设计的重要工具,并成功应用于航空航天、轨道交通等领域。然而,优化结果往往比较复杂,虽然增材制造技术的发展为其提供了强大的制备技术,但一些设计中仍需考虑制造约束。其中,最小/最大尺寸约束广泛存在于各种制造工艺中。例如,受机器加工精度影响,结构需保证一定的最小尺寸特征;而考虑到相变凝固以及热烧结等制造过程,为减少热残余应力及
学位
由于复合材料压力容器在满足结构减重需求上具有明显优势,因此在新能源汽车、航空航天、储存运输及分离等领域被广泛应用,如何保障结构安全成为了是复合材料压力容器研究领域的重要课题。目前保障复合材料压力容器服役期间安全性的主要方法是设置安全系数,并依据相关标准限制结构的服役载荷,使结构在工作状态下的应力小于材料的极限强度,两者的差值即为结构的安全裕量。随着新型材料及制造工艺的发展,若一直使沿用几十年前制定
学位
得益于其强度和耐用性,混凝土材料被广泛应用于地上和地下建筑结构,如楼房、隧道、大坝、桥梁、防洪结构等军用、民用以及工业建筑中。因此,混凝土结构的稳定性研究是关乎人们生命与财产安全的重要课题。在许多特定的环境条件下,或意外火灾发生时,混凝土结构在高温环境下的结构承载能力会面临巨大挑战。因此,对混凝土结构在非常温工况下的失效断裂问题进行模拟研究,有助于人们对其结构可靠性进行更全面的分析与认识,进而为工
学位
由于裂纹尖端存在几何突变,热流场在裂纹尖端处存在奇异性,因此常用的传统有限元方法在处理含裂纹热传导相关问题时具有较为明显的局限性。一般情况下,含裂纹热传导相关问题,都需要进行一次热传导分析从而得到裂纹尖端附近的热流场和温度场分布,再利用一些外推法等后处理手段才能获得裂纹尖端处的热流强度因子。本文根据热传导问题相关的变分原理,把含裂纹热传导相关问题转换到辛求解体系中,从而获得辛对偶控制方程,同时求解
学位
近年来,由于航天任务的逐渐复杂化,空间结构逐渐向大型化、柔性化方向发展。空间可展桁架由于具有质量轻、展收比高等优点,经常用作航天器工作平台的支撑结构。但是在空间环境中,航天器往往会受到空间重力梯度、温度变化、太阳光压等外界因素的影响,另外在进行位姿变化、太空作业等主动工作过程时,都很容易导致外伸桁架结构发生低频的振动,在阻尼较低的空间环境中,结构振动能量衰减速度很慢,如果不加以控制,可能会对整个系
学位
拓扑优化作为一种低成本、高效益的结构设计方法,目前已被广泛应用于多种工程设计领域中。传统的拓扑优化问题往往是在载荷位置确定的框架下提出的。然而在实际工程中,由于结构受力环境的改变,载荷很可能作用于除特定位置外的其它位置处。因此,为增强结构抵抗载荷位置变动的能力,研究载荷位置不确定条件下的拓扑优化问题具有十分重要的现实意义。现有的考虑载荷位置不确定性的拓扑优化研究大多都集中于载荷位置在名义加载点附近
学位
随着寒区油气等自然资源的开发利用,冰区船舶及海洋工程装备设计研究备受国际社会关注。极地船舶及寒区海上风电工程装备分别作为支撑发展北极航道运输和寒区可再生能源开发的重要海洋工程装备,研发设计该工程装备具备极高的战略价值。极地船舶作为北极航道运输、破冰引航、科学考察及救援任务于一体的重要海洋工程装备,面临复杂冰区航行工况,需具备较好的结构抗冰性能和操纵破冰能力,并进一步满足海洋工程结构作业保障工作。此
学位
点阵夹芯结构一般是由上下面板、芯层以及面板与芯材之间的粘结层组成,由于其芯层点阵结构具有优异的力学性能以及可设计性强等特点,可以很好地满足轻量化以及各种复杂工况的要求,被广泛应用于车辆、航空航天、航海等重要的工业领域。然而,在实际工程应用中,夹芯结构难免会受到压缩、冲击等荷载的作用,导致复合点阵层板出现损伤、界面脱粘等破坏。因此,开展复合材料点阵夹芯结构的准静态压缩性能以及镁合金点阵夹芯板的低速冲
学位
复合材料以比模量和比强度高、可设计性强、耐腐蚀等优点被广泛应用于航空航天结构中。复合材料部件多以薄壁结构出现,采用加筋形式增强结构的整体刚度,提高层合板的结构效能。在复合材料加筋结构的实际应用中,筋板间界面的脱粘一直是限制结构承载能力的重要因素。因此本文主要针对界面的损伤分析与评估,以及界面失效对结构承载能力的影响开展研究。首先,对两种尺寸的复合材料帽型整体壁板开展了轴压试验研究,通过观察轴压壁板
学位
挤压油膜阻尼器结构简单,在航空发动机等旋转机械的减振抗振设计中起到重要作用,国内外学者研究开发了多种挤压油膜阻尼器。其中俄罗斯学者提出的弹性环式挤压油膜阻尼器结构紧凑,同时具有调频和减振功能。但该阻尼器中的弹性环形状是内外交错的弹性凸台环,这导致弹性环存在应力集中和油膜挤压阻尼效应利用不充分的问题。本文设计了一种新的弹性环挤压油膜阻尼器,把弹性环设计成具有周向正弦(或者余弦)函数形状的波纹结构,弹
学位