微波场中铌精矿碳热还原反应行为研究

来源 :内蒙古科技大学 | 被引量 : 0次 | 上传用户:a12431
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铌作为重要的稀有金属,由于具备高熔点、高延展性、导电性好、抗腐蚀性强、超导性等特点,所以在国防科技、航天航空、电子器件、医疗器械等领域得到广泛应用。但现阶段白云鄂博铌资源的利用工艺,由于存在工艺流程复杂、环境污染严重、能源消耗高以及经济效益低等问题,从而在一定程度上限制了铌冶炼的进一步发展。微波加热是一种新型加热手段,具有避免冷中心、易于自动化控制及环保无污染等优点,常用于复杂矿物的还原过程。本文针对铌矿物综合利用的问题,进行了铌精矿微波碳热还原研究,探索了铌精矿微波碳热还原反应行为及强化机理,为铌精矿冶炼提供新的思路。本文对铌精矿微波碳热还原工艺进行了研究,研究结果表明:随着还原温度的上升,铌精矿金属化率先迅速增大,达到1200℃后金属化率仍在增加,但增加速率有所减慢;铌精矿金属化率随着保温时间的增加先增大后减小,保温时间30 min时金属化率达到94.84%,在60 min时仅为93.26%。随着配碳比的增加,金属化率不断上升,配碳比为1:1时,金属化率为93.26%;在配碳比达到1:1.2时,金属化率为95.48%。而随着配碳比的增加,过量的碳可能会将金属铁及未反应氧化铁等进行包裹,阻碍了反应的进一步进行;最终得出微波场中铌精矿碳热还原的最佳工艺条件为还原温度1100℃、保温时间30 min、配碳比1:1。本文对铌精矿微波碳热还原反应过程中有关于Nb、Ti的还原过程进行研究,结果表明:900℃时Nb C开始生成;1100℃时氧化铌还原接近尾声,氧化钛开始还原,铌钛产物主要为Nb C与(Ti、Nb)C;1300℃时,二氧化钛碳热还原反应大量进行,产物主要以Ti C与(Ti、Nb)C形式存在。本文对铌精矿碳热还原过程的动力学机理进行了探索,以非等温热分析动力学为手段,改良C-R法为方式,与15种机理函数模型进行拟合,对反应过程中反应分数与温度曲线进行了研究。结果表明:微波场中铌精矿碳热还原反应符合三维扩散模型,方程为y=1-(2/3)α-(1-α)2/3,表观活化能Ea=131.654 kj/mol远小于常规加热下Ea=376.732 kj/mol。
其他文献
五轴数控机床作为高端装备制造业的支撑力量,体现了一个国家工业现代化的发展水平。其高速高精度加工能力是当前各国科研工作者所关注的重点,而数控系统所具有的插补算法的优劣会直接影响到插补速度和加工精度。NURBS插补技术因其曲线具有强大的形状控制能力和优良的性质,已成为提高五轴数控机床性能和市场竞争力的关键。因此,研究适用于五轴数控机床的高速高精度加工的NURBS曲线插补算法具有重要意义。针对目前插补算
学位
本文以HCl-AlCl3络合解离液中加入Na2SO4得到的稀土复盐为研究对象,经化学分析、XRD和SEM-EDS检测,掌握了复盐中的化学组成、物相结构和形貌特征;绘制了碱液环境下复盐中主要组分在不同温度下的电位-pH图;分别研究了不同因素对复盐碱转过程的影响,探究了反应机理和离子迁移规律。分别研究了La-Ce-Pr-Nd-H2O系、Al-H2O系、Th-H2O系和CaS-H2O系电位-pH图中各个
学位
随着汽车轻量化需求的发展,先进高强度钢在过去的几十年里一直在发展。双相钢是其中应用较为广泛的一类钢种,其显微组织主要包括铁素体和马氏体。作为汽车用钢,它具有良好的延展性、高加工硬化率和良好的成形性。本文通过控制轧制工艺、退火温度、保温时间及压下量等参数,制备了一系列双相钢,利用光学显微镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)等方法,研究不同的工艺参数对双相钢的组织演变和力学
学位
在如今的信息化时代,伴随信息资源的数字化和信息量的迅猛增长,对存储器的存储密度、存取速率及存储寿命的要求不断提高。而光学数据存储技术正以其容量大、寿命长、分辨率高等特点成为新时代重要的信息存储技术。稀土掺杂无机光致变色材料具有热稳定性好、抗疲劳和造价低廉等特点,被认为是高密度光学数据存储材料中的必备。但是如今的无机光致变色材料在光学存储的实际应用中还存在着很多的挑战,如一些无机化合物(La2Ti2
学位
旋流器作为油砂分离的重要工具,其内衬的磨损严重制约着油砂的开采。高铬铸铁是一种较为常见的耐磨材料,但在面对旋流器内衬的应用上仍有许多不足,提升其耐磨性刻不容缓。本文利用自蔓延高温合成(SHS)和真空消失模铸造相结合的方法,添加YG8硬质合金颗粒和YT15硬质合金颗粒,制备了原位合成Ti Cp/高铬铸铁基复合材料,采用显微组织观察、场发射电子显微镜、物相成分分析、维氏硬度测试和干砂橡胶轮磨损试验检测
学位
我国是稀土资源大国,如何高效地利用稀土资源,研发稀土新材料,已经成为当今科研人员研究的方向和目标。目前,随着稀土铈酸盐材料的用途越来越广泛,而追求其优异性能的同时也对纳米粉体的制备提出了更高的要求。研究表明与传统材料相比,纳米材料表现出更加优异的性能。为此,本文开发了一种新的微乳体系,即以油酸和2-氨基-2-甲基-1-丙醇(AMP)/正辛醇/煤油/水溶液组成的反相微乳液体系为反应介质,成功合成铈酸
学位
采煤工作面搬家回撤工作是一项庞大的系统工程,对于特厚煤层综放工作面而言,末采期间回撤通道围岩是否稳定,决定着工作面搬家回撤工作及整个矿井的采掘接替效率。在综放工作面末采阶段,回撤通道受工作面超前支承压力前移影响,工作面及回撤通道围岩应力场环境显著增大,导致其易发生围岩大变形,诱发冒顶、垮帮、顶板压架等事故,严重影响工作面搬家回撤工作顺利进行。本文以大柳塔煤矿活鸡兔井1-2特厚煤层下分层综放工作面回
学位
我们国家制定“双碳目标”后出台一系列氢能发展政策,开发出经济高效的储氢技术,是实现该目标的重要保障。本文通过Pr元素替代La2Mg16Ni中的La元素,采用中频真空感应法制备出La2-xPrxMg16Ni(x=0.1~0.4)合金。然后添加石墨烯催化剂球磨制备出复合储氢合金,并研究复合储氢合金的储氢性能。首先,La2-xPrxMg16Ni(x=0.1~0.4)合金与4 wt.%石墨烯催化剂球磨10
学位
煤炭是我国社会经济发展的支柱型基础能源,2020年给出的数据显示中国一次能源生产总量为43.3亿吨标准煤,煤炭占能源总量比重为67.6%,煤炭这种不可再生能源在能源消费结构中仍然占据很大比重,其中矿井火灾事故属于煤矿常见事故之一,而矿井巷道又被分为水平巷道和倾斜巷道。在目前已有的研究中,关于矿井水平巷道火灾时期火源热释放速率、火区阻力、烟流滚退距离、临界风速以及烟气分布规律的研究硕果累累,而关于矿
学位
海洋环境的复杂性导致海工钢的使用寿命极短,在海工钢的服役过程中,疲劳损伤、摩擦磨损和腐蚀等都是开始于材料表面,可以说材料表面状况决定材料的使用寿命。而喷丸强化作为一种成熟的表面改性工艺,可以使材料表面性能得到增强,进而改善材料的使用性能和使用寿命。因此研究喷丸工艺对海工钢表面性能的影响情况,对延长海工钢使用寿命具有重要意义和使用价值。本文选择E690海工钢作为研究对象,基于常规喷丸和超音速喷丸两种
学位