面向暖涡观测的多智能体路径规划系统实现

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:zxf3896641
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
海洋暖涡观测需要多智能体之间的协同以及任务分配,尤其是异构智能体之间的协同可以充分发挥不同智能体之间的特点。在多智能体的暖涡观测中,合理的任务分配可以保证系统以最小的代价完成全部任务,这是多智能体多任务问题的研究热点之一;路径规划是智能体在已知或者未知环境信息的前提下执行任务时,为智能体提供从起始点到终点的可行路线。以上述为前提,本文开展了面向暖涡观测的多智能体路径规划研究,主要研究内容如下:1、多智能体暖涡观测系统总体方案设计。针对观测环境以及智能体功能需求,设计了无人船和无人机硬件系统,系统通信方案以及地面站软件方案。2、多智能体任务分配算法研究。针对多智能体的任务分配问题,选择了计算时间短、效率高的匈牙利算法。同时针对匈牙利算法不可用于非方阵的缺点,采用“加边补0法”和“加边补小法”进行了算法优化,并利用优化后的算法给出了方阵和非方阵的算例分析,验证了算法在解决非方阵问题上的有效性。3、多智能体路径规划算法研究。A*算法用于智能体的全局路径规划,但算法存在搜索速度慢,且路径不平滑的缺陷。对此提出了改进措施:一是改变评价函数,为启发函数加入了权重系数,以此来改变启发函数和实际代价在评价函数中的比重;二是利用Floyd算法思想删除路径上的冗余节点,使得搜索路线更加平滑;针对局部路径规划算法人工势场法在遇到障碍物时容易陷入局部最小值的问题,提出了在人工势场法中加入子目标点的改进策略,从而在智能体陷入局部最小值问题时引导智能体脱离困境;融合改进A*算法和人工势场法,在得到全局最优路径的同时可以躲避环境中的未知障碍物;最后利用仿真软件验证了改进和融合算法的可行性。4、实验平台搭建和实验验证。在搭建的无人船和无人机平台进行了无人机通信中继实验,无人船在有\无障碍物的条件下的路径规划实验。通过实验数据分析,验证了改进后A*算法和人工势场法以及和融合算法在无人船路径规划问题上的有效性。同时增加了部分项目验收试验的介绍,验证了本文的多智能体路径规划系统在实际工程应用中的可靠性。
其他文献
近年来,随着城市化的快速发展,城市基础设施不断完善,形成了万物互联的城市物联网管理体系。智能井盖作为较早提出的概念,受制于远距离无线物联网通信发展和无线传感节点续航等问题,发展缓慢。针对智能井盖续航低、功耗高的问题,本文提出一种基于复合式自供电的智能井盖监测系统,主要研究工作如下:(1)提出复合式自供电的智能井盖监测系统整体框架,包括电源、控制器、传感器和无线通信模块(NB-Io T),其中电源部
学位
对硝基苯酚和硝基苯是水体中优先控制的污染物。稻壳是稻谷加工的废弃物,产量巨大。本研究采用稻谷加工废弃物稻壳进行限氧热解制备稻壳生物炭,并采用碱改性稻壳生物炭显著提高其吸附量,采用元素分析仪、比表面积测定仪、XRD、SEM、EDS等仪器对稻壳生物炭进行表征,本研究提供一种经济有效地去除水中对硝基苯酚和硝基苯的方法。本论文主要研究结果如下:在773 K温度下,限氧热解2 h和的稻壳生物炭吸附性能好,吸
学位
<正>爱游戏是幼儿的天性。笔者认为,教师可以将幼儿对游戏的热爱迁移到劳动教育中,利用富有游戏趣味的劳动方式,培养幼儿良好的劳动品质,在劳动教育中进一步提升幼儿的动手能力,激活幼儿的劳动意识,培养幼儿的劳动能力,促进幼儿心智的发展。在幼儿教育中,教师要将游戏与劳动相结合,在提升游戏教育效果的同时,培养幼儿的劳动意识,促进幼儿的成长进步。
期刊
人体动作识别是深度学习中重要应用任务之一,精准识别人体动作所表达的语义信息可以为人们生产生活提供便利,在人类生活的各个方面都具有重大意义。现有人体动作识别方法大部分是基于视频数据和骨骼点数据,采用深度学习的动作识别方法,这些动作识别方法在当时已经取得十分不错的成果,但仍然存在一些不足之处:一方面,人体骨骼点中存在丰富的空间和时间特征,模型对这部分特征的关注度不足;且现有方法对于人体动作特征的提取仅
学位
随着工业制造4.0的到来,制造系统向着多品种小批次的方向转变,柔性作业车间生产模式得以广泛应用。人工蜂群算法(Artificial Bee Colony Algorithm,ABC)自提出以来因其机制灵活、参数少等优点被广泛关注,非常适合结合其他算子设计混合算法求解各类问题。本文将ABC与多种优秀算子和策略相结合,设计了不同的混合ABC算法,着力于3种柔性作业车间调度问题(Flexible Job
学位
传统深度神经网络剪枝算法通常旨在消除网络中的冗余结构,以轻量化神经网络。然而,目前一些研究发现一个过参数化的随机初始化神经网络中的稀疏结构本身就具备很好的性能,并设计了一些剪枝算法以找到隐藏在过参数化神经网络中的稀疏结构。这些研究表明剪枝也可被用来寻找过参数化神经网络中的稀疏结构,本文重点研究了基于掩膜学习的神经网络剪枝算法,通过学习掩膜来找到过参数化神经网络中的稀疏子网络。本文具体进行了以下两个
学位
最近,国家为助力实现“碳达峰”和“碳中和”目标,由工业和信息化部等部门联合发布了《电机能效提升计划(2021-2023)》。电机各项性能的要求越来越高,考虑单个目标的电机性能设计已经很难满足现实设计需求,电机的多目标优化设计成为了电机达到高效节能目标的重要途经。本课题以一种新型轴向磁场永磁记忆电机(axial flux permanent magnet memory motor,AFPMMM)为研
学位
随机非线性系统指的是输入输出及干扰项存在随机因素或者系统本身带有某种不确定性的非线性受控系统,它可以在金融、股票清算、电力系统建模和人口动力学等方面提供一个良好的数学建模框架。对于控制系统来说,稳定性是研究控制系统首要解决的问题,所以近些年来,关于随机非线性系统的稳定性问题一直是专家学者深入研究的热点,并取得了一系列优秀的研究成果,但仍有许多关于随机稳定的问题值得近一步讨论和改进。因此本文研究了基
学位
随着科技发展和社会进步,各个领域对预测模型的精度、稳定性要求越来越高。近年来,深度学习中的循环神经网络(RNN)技术,特别是其与另一深度学习技术-卷积神经网络(CNN)相融合的CNN-RNN架构在预测中显示出强大优势。但基于RNN的模型在预测任务中存在滞后性,流行的CNN-RNN架构也未解决上述问题。注意到宽度学习系统(BLS)具有权重计算直接、运算快速高效的优点,本文尝试融合宽度学习和深度学习的
学位
显著性目标检测旨在识别出图像中最显著的对象与区域,目前已经成功地作为目标跟踪、物体识别以及语义分割等计算机视觉领域任务的预处理过程。传统方法大多依靠颜色,纹理等手工特征或者启发式先验来捕获图像的局部细节以及全局上下文信息,受制于特征的表达能力,在复杂场景中检测显著物体的能力大打折扣。近年来,卷积神经网络快速发展,得益于海量的数据以及模型强大的特征表达能力,基于深度学习的算法在性能上有了巨大提升。本
学位