【摘 要】
:
基于短路电流的热稳定校验,是电气设备选择条件之一,而热稳定校验需要相对准确的热效应计算。现有关于热效应的文献资料大多关于同步电机,而双馈感应电机(DFIG)与同步电机结构差异较大,其短路电流计算更为复杂,目前尚未见到国内外对双馈感应电机热效应的解析计算及其应用研究。本文对故障情况下双馈感应发电机的短路电流及其热效应分析,主要研究如下: (1)改进了应用于热效应计算的DFIG短路电流解析表达。分析
论文部分内容阅读
基于短路电流的热稳定校验,是电气设备选择条件之一,而热稳定校验需要相对准确的热效应计算。现有关于热效应的文献资料大多关于同步电机,而双馈感应电机(DFIG)与同步电机结构差异较大,其短路电流计算更为复杂,目前尚未见到国内外对双馈感应电机热效应的解析计算及其应用研究。本文对故障情况下双馈感应发电机的短路电流及其热效应分析,主要研究如下:
(1)改进了应用于热效应计算的DFIG短路电流解析表达。分析现有文献短路电流实用表达的局限性,折衷短路电流计算精度和热效应计算可行性,采用转子磁链一阶简化模型,解析转子磁链稳态分量以提高短路电流精度,使其适用于定子电压未跌至零的情况,建立短路电流解析表达形式,并仿真验证所提解析表达的准确性。
(2)提出了DFIG短路电流热效应解析表达。将短路电流分解为四个分量,建立平方积分后各项表达式,在不同初始条件下计算十项热效应分量表达式,忽略对热效应影响较小分量,保留影响较大分量,从而得到短路热效应实用解析表达,分析电压跌落深度、撬棒阻值、风速等因素对短路电流热效应的影响。
(3)提出了DFIG短路电流热效应对转子撬棒的温升影响。解析短路电流和撬棒温升的关系式,对于撬棒,由于短路时间短,散热条件差,热效应几乎全部转化为温升,将增加撬棒电阻,导致增加温升和短路电流减小两个相反的结果,并分析撬棒阻值动态变化对撬棒发热量的影响。
(4)提出了基于短路电流热效应计算的热稳定校验,对铝导体温升进行计算。根据导体温升曲线,通过热效应温升公式计算铝导体的温升。
其他文献
随着各种高频电力电子器件的应用,电磁干扰已成为机电设备中的一个严重问题。永磁同步电机作为各类驱动系统的核心设备,由于其物理结构复杂,耦合路径丰富,其电磁干扰问题的研究一直以来都是领域中的重点和难点。为此本文研究了永磁同步电机的电磁干扰特性及其建模方法,以期为电机电磁干扰的预测提供指导。主要完成了以下工作:(1)永磁同步电机的电磁干扰特性分析。开关器件IGBT作为整个电机系统电磁干扰的源头,首先对其
糖尿病是常见代谢性疾病之一,其致死率高,发病率逐年上升,已成为继心脑血管疾病和癌症之后危害人类健康的第三大疾病,其中约90%为2型糖尿病(Type 2 Diabetes Mellitus,T2DM)。研究表明,显著和持续的高血糖造成的糖毒性是引起或加重胰岛β细胞功能减退的重要原因之一。糖尿病病理条件下的糖毒性诱导的氧化应激是引起胰岛β细胞凋亡和细胞功能减退的直接原因。因此,在糖尿病的预防和治疗中,
已有研究表明,柑橘果实具有包括降糖在内的多种生物活性。本研究利用HepG2细胞-葡萄糖消耗模型,对35个不同品种柑橘果实(油胞层、白皮层、囊衣、汁胞)的黄酮类物质进行促葡萄糖消耗活性评价。从具有较强促葡萄糖消耗活性的柑橘品种果实中分离纯化得到多甲氧基黄酮(PMFs)组分,对其体外降糖活性进行评价,并通过实时荧光定量PCR技术(RT-qPCR)分析相关基因表达差异,开展相关机理研究;进一步利用自发型
电能的广泛使用导致大量的电能质量问题出现,尤其是非线性负荷的急剧增加,导致电压波动问题显著,严重恶化电能质量。对于大面积零散分布的工厂负荷和居民负荷,单端电压波动治理设备已无法满足要求。柔性多状态开关(FMSS)是最近的研究热点,实现潮流互济的同时可以多端口动态、高效的抑制电压波动,因此,本文基于三端口FMSS研究其电压波动治理性能,具体研究内容如下: 以背靠背结构的三端口FMSS为研究对象,分
异步电机因其可靠性高、成本低等优点在电动汽车、风力发电等领域得到广泛应用,矢量控制方案则因其优异的控制性能受到人们青睐。尽管异步电机矢量控制是一个相对成熟的课题,但是各应用场合对驱动系统的转矩控制精度、运行可靠性提出了越来越高的要求,而且高性能矢量控制仍然存在一些难点和挑战。为此,本文将从磁链观测、转子时间常数在线辨识、无速度传感器控制三个方向开展研究,以提高系统转矩控制精度和可靠性。 电压模型
随着环境污染和资源紧张问题日趋严峻,低碳环保观念深入人心,电动汽车日益受到人们的青睐。开关磁阻电机具有结构简单、输出转矩大、启动电流小、可控性好的优点非常适用于电动汽车。针对电流软斩波控制应用于开关磁阻电机时出现电流脉动大的问题,本文通过控制算法改进减小了电流脉动。同时,基于提高开关磁阻电机驱动系统可靠性的要求,本文设计了一种五电平功率变换器并提出了相应的容错控制策略。 本文分析了采用传统电流斩
为解决能源危机和环境污染等问题,新能源的开发与利用已成为推动经济发展的新出路,锂电池作为新能源之一,因其环保节能的特点得到了大力的开发。锂电池不仅在触手可及的电子产品中得到广泛应用,同时也作为电力能源在汽车和电力行业得到推广,电动汽车就是最具代表性的应用。对电动汽车而言,精确预测电池剩余使用寿命,是电动汽车取得与燃油汽车竞争优势的核心问题之一。准确的SOH(State Of Health)估算可以
随着分布式电源及电力电子技术的发展,基于电压源型换流器(voltage source converter,VSC)的直流配电网具有接入灵活、可靠性高、经济性好等优点。另一方面,随着智能电网的发展以及电力市场改革带来的价格激励,使得居民用户在需求响应(demand response,DR)中发挥越来越重要的作用。首先,本文详细分析了VSC和DC/DC变换器的拓扑结构及工作原理,建立了VSC和DC/D
配电网愈来愈明显的“多源性”特征使得传统的配电网发展模式已不适应新时代配电网发展需要,同时也对配电网供电的安全性和可靠性提出了更高的要求。柔性多状态开关作为一种采用电力电子新技术的新型装置,与常规联络开关相比,能实现潮流的连续灵活调控,运行模式的柔性切换,促进馈线负载分配的均衡化以及改善电能质量。 本文以背靠背结构的三端口柔性多状态开关为研究对象,首先分析了三端口柔性多状态开关与三个交流系统之间
随着光伏产业的飞速发展,大型光伏发电系统并网使得电网渗透率不断提高,大量电力电子元器件、非线性负载加入电力系统中,严重污染了电力系统。因此,对大型光伏发电系统接入电网的仿真建模尤为重要。但若对大型光伏发电系统进行详细建模,会存在仿真规模大、仿真时间长等问题,因此有必要同时兼顾准确性和简化程度构建大型光伏发电系统的简化等值模型。 本文首先基于RT-LAB实时仿真平台对光伏发电单元进行详细建模,对于