论文部分内容阅读
目前光通信系统中的电子交换方式已经限制了光纤通信优势的发挥,出现了所谓的“电子瓶颈”问题,而全光网络将突破电交换的瓶颈成为下一代网络的核心技术,引起了广泛的研究兴趣。在这样一个大背景下,本文在国家863计划以及国家自然科学基金的资助下,围绕着新型光路交换的全光网络,进行了包括全光环境下超长距离传输的实现、40Gbps传输技术、全光时钟提取等关键技术的研究,并对基于分布式光路交换的全光网络的基础理论和具体实现等方面进行了一系列深入的研究,所取得的主要研究成果如下: ■ 利用啁啾光纤光栅(CFBG)补偿长距离传输系统的色散。在全所师生共同完成的863项目实现的10Gbps非归零码(NRZ)3100km(带FEC)的超长距离传输的基础上,进一步优化系统实现了2015km(无FEC)无误码传输。突破了以往大量实验研究认为的在利用啁啾光纤光栅补偿色散的传输系统中若采用NRZ则传输距离一般局限在1000km左右的认识。同时利用归零码(RZ)码和载波抑制归零码码(CSRZ)在啁啾光纤光栅补偿色散的传输系统中实现2560km低功率代价无误码传输,首次将高级调制码型运用于利用啁啾光纤光栅补偿色散的传输系统中,以点对点的方式实现了超过2500km的超长距离传输。 ■ 比较和分析了啁啾光纤光栅的反射谱纹波、群时延纹波以及带宽对NRZ、RZ和CSRZ码三种调制码型的不同影响,对啁啾光纤光栅的不理想特性对使用高级调制码型传输系统的影响给出了物理解释。 ■ 通过数值仿真,验证了啁啾光纤光栅在高速(>40Gbps)系统中具有有效抑制信道内非线性的特点;研究了将啁啾光纤光栅应用于利用相位调制码型的40Gbps传输系统色散补偿的特点,定量比较和分析了在相位调制系统中使用色散补偿光纤和啁啾光纤光栅补偿链路色散的不同特点。 ■ 首次采用了啁啾光栅和半导体光放大器方式实现了NRZ信号时钟分量的增强,实现了基于受激布里渊散射效应的、对传输速率不敏感的的RZ、CSRZ和NRZ信号时钟分量提取,并对该方案中影响时钟分量提取的因素进行了详细分析。 ■ 实现了基于光路交换的四节点全光通信网演示系统。该全光网采用分布式交换,其端到端连接的特点从物理结构上最大程度保证了网络安全。该网络的实现为开展各种光传输实验、网络业务研究提供了平台。