论文部分内容阅读
本文研究的主要内容是将谱亏损校正算法(Spectral Deferred Correction Methodes)加以改进,并推广应用到离散与分布型延迟系统。
延迟系统数值算法的研究迄今为止已经取得了丰厚的成果,比如单支方法,一般线性方法,Runge-Kutta 方法等都可以用来求解延迟微分方程,并且部分算法具有良好的稳定性和收敛性。谱亏损校正算法是由Dutt,Greengard和Rokhlin 于2000年提出来的一类亏损校正算法。此算法利用了Picard 积分方程和Gauss 求积公式,求解常微分方程、偏微分方程和微分代数系统都有很好的效果。本文探讨将这种算法用于求解延迟微分方程,并且分析此算法的稳定性和收敛性。本文区间段上的节点选取方式是Legendre-Gauss 点。
文章结构大致如下:第一章介绍了延迟微分方程的研究背景及意义和谱亏损校正算法的研究现状。第二章给出了本文需要的预备知识,包括Legendre多项式和Gauss 点等。第三章和第四章分别探讨具变延迟的离散型延迟系统和分布型延迟系统的谱亏损校正算法。将经典谱亏损校正算法加以改进,我们得到二种新的算法。
探讨了新算法分别求解变延迟微分方程和延迟积分微分方程的稳定性条件,并且分析了算法的收敛阶。数值实验结果表明该算法是非常有效的,而且符合理论分析的结果。第五章为全文总结,说明了可以继续探讨的内容。