论文部分内容阅读
传统的不饱和聚酯树脂(UPR)产品或材料的制备通常用约30 wt%的苯乙烯(St)作交联组分,以过氧化甲乙酮/异辛酸钴为室温引发体系。因此,在其加工和固化成型过程中,不可避免地存在St导致的对人的健康和环境的危害以及含钴化合物潜在的致癌风险。毫无疑问,利用以不含钴的化合物作为促进剂的新引发体系来制备无苯乙烯的UPR产品或材料是解决这一问题的有效策略。为此,设计与合成了低挥发性、低毒性的大分子活性单体氨基甲酸酯丙烯酸酯(HEA-IPDI);将所合成的HEA-IPDI和商业化的丙烯酸酯单体1,6-己二醇二丙烯酸酯(HDDA)一起用作替代St的UPR交联组分,从而得到UPR和非苯乙烯交联组分的混合树脂UPR/HEA-IPDI/HDDA;以季戊四醇四-3-巯基丙酸酯(PETMP)和Fe Cl3的组合物PETMP/Fe Cl3为促进剂,通过混合树脂UPR/HEA-IPDI/HDDA的室温固化,制备了无苯乙烯的UPR固化材料;对其制备工艺特性、物理机械性能、热性能和微观形貌进行了表征与分析。该研究可望为设计和制备环境友好的无苯乙烯的UPR产品或材料,以从根本上解决传统的UPR/St树脂固有的问题奠定坚实的理论和实验基础。研究的主要内容和结果如下所述。(1)通过丙烯酸羟乙酯(HEA)与异佛尔酮二异氰酸酯(IPDI)的反应合成了带两末端碳碳双键的氨基甲酸酯丙烯酸酯HEA-IPDI;以HEA-IPDI与1,6-己二醇二丙烯酸酯(HDDA)为UPR的交联组分,制备了一系列不同组成的UPR/HEA-IPDI/HDDA混合树脂体系;用过氧化甲乙酮/异辛酸钴引发体系在室温下引发混合树脂的固化,制得了无苯乙烯的UPR固化材料。对这些UPR固化材料的制备与性能的研究表明,混合树脂UPR/HEA-IPDI/HDDA的挥发性较低,通过合理地调整其配比可使其粘度满足加工工艺的要求。在混合树脂UPR/HEA-IPDI/HDDA中UPR含量一定时,随着HEA-IPDI含量的增加,树脂体系的粘度增加;相应地,所制得的UPR固化材料的物理机械性能、玻璃化转变温度Tg和热变形温度HDT也会在一定程度上有所提高。当UPR/HEA-IPDI/HDDA的质量比为45∶15∶40时,其粘度为1350 m Pa·s,在室温下的挥发量仅为传统的UPR/St混合树脂的5.36%;且相应的UPR固化材料的拉伸强度、断裂伸长率、弯曲强度和冲击强度分别为41.7 MPa、3.4%、50.8 MPa和7.0 KJ/m2,Tg和HDT分别为85.0℃和61.5℃。与UPR/St固化树脂相比,无St的UPR固化材料表现出了相对较低的拉伸强度和弯曲强度,更好的韧性和更高的热稳定性。(2)为了在无钴化合物作促进剂时实现混合树脂UPR/HEA-IPDI/HDDA的室温固化,用季戊四醇四-3-巯基丙酸酯(PETMP)和Fe Cl3组成UPR固化的复合促进剂PETMP/Fe Cl3,以过氧化甲乙酮(MEKP)和过氧化苯甲酸叔丁酯(TBPB)为引发剂,设计了两新型室温引发体系,即含单一引发剂的引发体系MEKP/PETMP/Fe Cl3和含双引发剂的复合引发体系MEKP/TBPB/PETMP/Fe Cl3。以质量比为45∶15∶40混合树脂UPR/HEA-IPDI/HDDA为研究对象,研究了不同的新型室温引发体系对树脂的固化特性、物理机械性能、热稳定性和微观形貌的影响。结果表明,所设计的新型室温引发体系均可使混合树脂UPR/HEA-IPDI/HDDA实现室温固化;并可通过调节引发体系的组成制备出无色透明状的UPR固化树脂。此外,利用复合引发体系MEKP/TBPB/PETMP/Fe Cl3制得的UPR固化材料的力学性能优于相应的用MEKP/PETMP/Fe Cl3制得的UPR固化材料。当使用MEKP、TBPB、PETMP和Fe Cl3用量分别为1.25 wt%、0.2 wt%、0.6 wt%和0.3 wt%的复合引发体系MEKP/TBPB/PETMP/Fe Cl3时,混合树脂的凝胶时间为15.5min,所制得的UPR固化材料呈无色透明状,并具有相对较好的力学性能;其拉伸强度、断裂伸长率、弯曲强度和冲击强度分别为38.1 MPa、6.3%、49.7 MPa和8.9 KJ/m2,其Tg为84.5℃。固化树脂在264.3℃时的质量损失仅5%,表现出较高的热稳定性。