【摘 要】
:
金刚石增强金属基复合材料是一种很有前途的电子封装材料,金刚石与金属基体的界面在一定程度上决定了材料的力学和热学性能,而通过调控界面成分是改善金刚石与金属基体间界面结合的有效途径。因此,本文采用第一性原理计算研究了金刚石(111)/铝(111)和金刚石(111)/铜(111)界面的原子结构、黏附功和键合性质,并分析了Mo掺杂影响界面相互作用、力学性能和导热性能的微观机制。结果表明,当金刚石(111)
【基金项目】
:
非连续增强金属基复合材料高通量制备研发和示范应用,国家重点研发计划子课题,项目编号:2017YFB0703101;
论文部分内容阅读
金刚石增强金属基复合材料是一种很有前途的电子封装材料,金刚石与金属基体的界面在一定程度上决定了材料的力学和热学性能,而通过调控界面成分是改善金刚石与金属基体间界面结合的有效途径。因此,本文采用第一性原理计算研究了金刚石(111)/铝(111)和金刚石(111)/铜(111)界面的原子结构、黏附功和键合性质,并分析了Mo掺杂影响界面相互作用、力学性能和导热性能的微观机制。结果表明,当金刚石(111)、Al(111)和Cu(111)表面模型的厚度分别达到12个、5个和7个原子层时,表面能得到收敛,分别为5.01 J/m~2、0.81 J/m~2和1.29 J/m~2。在金刚石与Al基体形成的界面中,发生了较多的电荷转移并且生成了含有共价/离子混合成分的价键,而金刚石与Cu基体仅由含微弱共价成分的价键连接,因此,金刚石/铝清洁界面的黏附功远高于金刚石/铜界面。同时,金刚石(111)表面与Al(Cu)结合后的磁矩变化也证明了这一结论。通过偏析热的计算,发现Mo易于掺入金刚石/铝界面中,且有向Al基体扩散的趋势;而Mo掺入金刚石/铜界面中是一个吸热过程,且越靠近界面,所需能量越少。金属Mo的引入可增加金刚石/铝和金刚石/铜界面的黏附功,分别提升了7.2%和28.4%。电子结构分析表明Mo在金刚石/铜界面中增强了不同原子电子态的杂化,发挥了“桥接”作用而改善界面结合。金属Mo的掺杂降低了金刚石/铝(铜)复合材料的抗拉强度,但有效提升了其延伸率,这与界面附近电荷密度局域化以及C和Al(Cu)的电子态分布密切相关。此外,掺杂Mo原子会使金刚石/铝界面中的C-2p在费米能级附近电子态降低,但却可以大幅改善Cu-3d和C-2p在费米能级附近局域化严重的问题。因此,Mo是提高金刚石/铜界面导热性能的良好添加剂。以上研究结果从原子和电子结构的角度对相关实验结果进行了解释,为金刚石/铝(铜)复合材料的界面改性和设计提供了理论指导。
其他文献
9Cr-ODS(Oxides dispersion strengthening)钢具有优异的蠕变性能和抗辐照性能,是未来新一代核反应堆的候选材料之一。然而9Cr-ODS钢中Cr含量较低,抗腐蚀性能较差,这成为制约其实际应用的关键问题之一。通过在9Cr-ODS钢中添加高含量的Al,可以大大提高其抗腐蚀性能,但同时也会对力学性能产生影响。为了兼顾ODS钢的力学性能和抗腐蚀性能,本文研究了Zr和Al元素
传统导电水凝胶普遍存在力学性能差、导电内部结构不均一等问题,这严重限制了导电水凝胶的应用前景,因此导电水凝胶力学性能、抗冻、抗干性能亟待改善。丙烯酰胺与丙烯酸具有良好的亲水性,可以通过交联形成稳定的聚丙烯酰胺-丙烯酸水凝胶基体(PAAM),Fe3+可以与PAAM配位形成离子交联增强水凝胶的机械性能同时赋予水凝胶优异的离子导电性能,但PAAM-Fe3+导电水凝胶的力学性能、抗冻、抗干性能仍不能满足柔
本论文旨在通过设计分子结构制备高效自愈合的自修复水凝胶,探究自修复与交联键类型的关系,基于此优化结构设计组装全水凝胶的一体化柔性超级电容器和具有良好界面亲和性的纸基微型超级电容器,以提升柔性储能器件的使用寿命、拓展超级电容器的应用领域。主要研究内容如下:为了解决柔性储能器件的层间剥离与结构损坏问题,通过一步反应聚合制备了自愈合型两亲性超分子凝胶,研究了自愈合凝胶中的离子缔合作用,分析阻抗与凝胶微观
能源危机与环境污染问题的日益加剧,可再生清洁能源的发展具有重要意义。氢气是一种理想的清洁能源,电解水制氢方式是大规模工业制氢的主要途径之一。为提高电解水制氢装置的效率,设计制备高效稳定的电极材料是重中之重。在众多过渡金属化合物电极材料中,过渡金属二硫化物(TMDs)因其边缘位点表现出良好的析氢活性而被广泛研究,但大多数TMDs呈2H相,其基面的半导体性与催化惰性限制了发展。ReS2是一种具有热力学
氢能是一种能量密度高、清洁绿色无污染的可再生能源。目前电解水制氢是最具潜力的氢气制备方式。在电解水催化剂中,钴基化合物催化剂具有储量丰富、成本低廉及种类多样等特点,通过调控钴基化合物催化剂的微观形貌、化学成分以及电子结构等性质,可以有效提升电催化活性。在电催化剂的改性策略中,杂原子掺杂和异质结构构建是两种简单高效的方式。金属原子掺杂可以影响基体的电子结构,改善过渡金属基材料的电子转移能力及本征催化
电催化产氢(HER)是制备高效清洁氢能的有效手段,但目前电催化剂中应用最多的是Pt基材料,由于其含量少、价格贵等原因,开发廉价高效的非贵金属催化剂具有重要意义。铜基材具有廉价、导电性好等优点,但d轨道满电子填充使其具有较弱的氢吸附能,限制了其在电催化产氢中的应用。本论文设计了CuAg不互溶合金纳米片,调节Cu的电子结构,提升其催化性能。采用渗锌法制备了铜银偏析纳米片晶体,并用酸腐蚀法将多余锌腐蚀,
压电复合材料以其具备高压电性能、低阻抗的性能特点而受到了压电发电、柔性穿戴发电机等研究领域的广泛关注。本文提出了一种新型的具有多孔性状的压电陶瓷与环氧相复合形成的3-3型压电复合材料,研究结果表明这种结构的压电复合材料具有优异的压电发电性能。本文采用了有机泡沫浸渍法制备了多孔结构的PZT-PZN-PNN陶瓷材料,探究了陶瓷浆体中陶瓷相浓度、浆体p H等对复合材料压电性能的影响;通过预极化工艺处理多
随着人们可持续发展意识的觉醒,清洁可持续的新能源受到了前所未有的瞩目。因此,可以储存能源的电子设备成为了研究的热点。超级电容器具有高功率密度、长循环寿命、绿色环保的特点,有希望应用于便携式器件和高功率器件。超级电容器虽然表现出较高的功率密度,然而其能量密度普遍不高,限制了其实际应用。改善这一不足最直接有效的方式是对相应电极材料进行优化改性。在诸多电极材料中,过渡金属氧化物/氢氧化物/硫化物具有成分
环氧树脂具有优异的力学性能、耐化学性和尺寸稳定性,但较差的冲击性能限制了其进一步的应用。钛酸盐晶须以及多壁碳纳米管具有较高的强度,经常被用来对各种聚合物基体进行增强增韧。本论文研究了钛酸盐晶须以及碳纳米管表面改性对环氧树脂复合材料性能的影响。利用多巴胺的氧化聚合反应实现了钛酸盐晶须表面包覆聚多巴胺,表面同时用聚多巴胺和碳纳米管改性,分别与环氧树脂共混得到复合材料。添加7.5 wt%的聚多巴胺改性晶
近年来,受生物启发的软致动器在人造肌肉和软体微型机器人等诸多领域具有巨大的应用潜力。然而,实现低成本制造,良好机械稳定性,优异多响应性,大变形和快速运动能力的高性能致动器仍是一大挑战。本文报告了一种简单可靠的策略,来构筑高性能多响应的聚吡咯(PPy)基双层致动器。该策略通过PPy在聚对苯二甲酸乙二醇酯(PET)基材上简单的水相化学氧化聚合,原位形成PPy分层的微/纳米结构。该原位沉积方法简单、通用