论文部分内容阅读
本文通过焊接热模拟技术、现代物理分析测试技术和平板对焊试验,研究了X90管线钢焊接热影响区的组织性能,并提出优化焊接参数的建议。讨论了X90管线钢焊接热影响区不同区域的组织性能、不同焊接热输入和HAZ粗晶区二次热循环对X90焊接热影响区组织性能的影响,以及焊接热影响区的脆化软化机理和预防措施。研究表明:当X90管线钢一次热模拟的峰值温度为850-950℃时,虽然温度处于(???)的两相区温度范围内,但是没有形成对材料韧性有较大影响的组织,韧性损失不大;当一次焊接热模拟峰值温度为1300℃时,产生粗晶区局部脆化,导致材料的韧性大幅度下降,从而成为焊接热影响区中最薄弱的一个区域。在试验参数范围内,随着焊接热输入的增加,X90管线钢焊接热影响区粗晶区CGHAZ的韧性呈下降的趋势。母材1焊缝组织在不同焊接热输入下CGHAZ具有类似的组织形态,从而决定了母材1焊缝组织经过不同焊接热输入下的CGHAZ具有类似的韧性水平。HAZ粗晶区二次峰值温度为800℃时处在临界区的温度范围内(Ac1~Ac3)时,此区域临界粗晶区(ICCGHAZ)在奥氏体晶界出现粗大M-A组员,并且经过部分重结晶晶粒并没有得到细化,继承了一次CGHAZ的粗大组织从而出现组织遗传现象,表现为ICCGHAZ的局部粗化,从而导致了(ICCGHAZ)性能大幅下降;母材1焊缝一次CGHAZ经过800℃的二次峰值温度焊接热循环后,组织和性能并没有急剧恶化,其韧性保持在一个较好的水平。从而表现为此合金成分的母材1焊缝组织经过二次不同峰值温度的热模拟后,焊接热影响区的各个区域的性能均表现良好。X90管线钢一次热模拟时,由于奥氏体晶粒在焊接热循环中急剧长大造成了CGHAZ的粗晶脆化;CGHAZ二次热模拟时,由于在临界粗晶区内形成了粗大的M-A组元分布在奥氏体晶界并呈“项链”结构,且遗传了一次粗晶区的粗大组织产生组织遗传现象,导致了临界粗晶区(ICCGHAZ)的局部脆化。在X90管线钢母材经一次峰值温度和CGHAZ二次峰值温度达到回火温度以上时,X90管线钢出现了软化现象,而且这种软化现象随着焊接热输入的增大而愈加明显。合理的管线钢的成分合金设计、将管线钢焊接热输入控制在合理的热输入范围内、经过焊前预热来改变冷却速度、根据实际材料进行合理的焊后热处理等可以有效的防止管线钢焊接热影响区的局部脆化现象。