【摘 要】
:
随着信息技术时代的到来,各种功能器件在信息传输及处理等领域越发重要,人们对器件的性能、集成度等要求也越发严格。目前,集成电路发展因难以突破物理极限,受到带宽不足、信号延迟和热噪声等因素制约,导致“电子瓶颈”的存在。而集成光子芯片作为信息传载的新兴领域,具有带宽大、微型化和可靠性高等优势,或将成为解决该问题的关键技术之一。其中,亚波长光波导结构在尺寸量级匹配和突破衍射极限的问题上显现出潜在的应用价值
论文部分内容阅读
随着信息技术时代的到来,各种功能器件在信息传输及处理等领域越发重要,人们对器件的性能、集成度等要求也越发严格。目前,集成电路发展因难以突破物理极限,受到带宽不足、信号延迟和热噪声等因素制约,导致“电子瓶颈”的存在。而集成光子芯片作为信息传载的新兴领域,具有带宽大、微型化和可靠性高等优势,或将成为解决该问题的关键技术之一。其中,亚波长光波导结构在尺寸量级匹配和突破衍射极限的问题上显现出潜在的应用价值,对于新型微纳光子芯片的集成发挥着重要作用。因此本论文对基于亚波长的微纳光波导器件进行了研究分析,其主要研究工作如下:首先,对亚波长微纳光波导器件的数值计算方法进行了综述,通过对比各种研究方法,选定严格耦合波分析方法,借助于Rsoft软件对亚波长光栅结构进行仿真分析。另外,对于亚波长微纳金属结构,时域有限差分法是最常用且直接有效的理论计算方法之一,为进一步提高计算效率和精度,使用商用软件FDTD Solutions作为该类型结构的建模工具。其次,以亚波长导模共振(Guided-mode Resonance,GMR)光栅为基础,利用Rsoft软件建模仿真,研究分析了基于亚波长的级联式双GMR光栅滤波器和超窄带滤波器结构。前者是矩形光谱滤波器,采用一种新型的三级级联平顶窄带带通滤波器结构,仿真结果表明该结构有效实现了在波长1550nm附近半峰全宽(Full Width at Half Maximum,FWHM)约为0.3nm且近似矩形的透射光谱。后者为基于亚波长超窄带滤波器设计,利用两个单GMR光栅结构串联,光栅中间分为无空气间隙和间隔2.13μm空气层两种结构。仿真结果显示在波长1550nm处,无空气间隙的双GMR光栅串联结构峰值透射率约为100%,FWHM可达0.012nm;而有空气间隙双GMR光栅串联结构的透射率约为100%,FWHM为0.15nm,并获得了平顶滤波曲线,平坦度约为0.1d B。最后,为实现无线传输解调一体的传感检测,通过FDTD Solutions软件分别设计了蝶形金属纳米阵列结构折射率传感器和等离子体调制器。对传感器的结构模型进行了数值计算及结构参数优化,其传感灵敏度为990nm/RIU,品质因子可达16.5。初步设计了等离子体调制器所配有的垂直阶梯金属光栅耦合器、偏振转换器和MZI调制波导。光学仿真表明耦合器在波长1525nm-1565nm范围内,其耦合效率均在58.09%以上,并且MZI调制波导狭缝对光场能量具有很好的束缚作用。
其他文献
第五代(5th Generation,5G)移动通信的到来标志着移动通信技术进入了多技术和多业务融合的时代。在5G中,毫米波和大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术的结合能够有效地提高频谱效率,但较多的天线数和系统成本限制了传统全数字预编码的使用。混合预编码作为一种有效的解决方案,降低了射频链的个数和硬件成本。因此,本文主要针对单用户毫米波
随着智能网联汽车大规模的应用,其安全性问题也日益凸显,涉及大量数据泄露和汽车破解事件。CAN网络作为车辆重要的底层控制网络,是黑客攻击的首要目标。在CAN网络安全防护技术中,入侵检测技术由于不会造成网络通信延迟而被广泛关注。为此,本文以CAN网络入侵检测技术为研究对象,提出了一种基于ID熵和支持向量机-数据关联性(SVM-DR)的检测方案,设计了车载CAN网络入侵检测装置,能够准确地应对典型CAN
激光技术的发展,使得从理论和实验上对原子、分子动力学过程的调控和探究成为科研工作者们的重点关注方向。越来越多的研究人员通过超快飞秒激光技术,调控分子的布居转移、电离等动力学过程,尤其是泵浦-探测技术的出现,使飞秒激光场中研究分子的光电子能谱意义更加深远。本文是运用含时量子波包法,理论上对双原子分子KLi,在飞秒激光场作用下的电离过程进行模拟计算。我们利用一束泵浦(pump)光和一束探测(probe
Ⅳ型胶原蛋白是基膜的重要组成部分,其正常的结构和功能对维持肾小球滤过屏障有重要的作用,Ⅳ型胶原相关基因的突变会导致Alport综合征、薄基膜肾病、局灶节段性肾小球硬化及肾小管间质损伤等一系列的肾脏病变。因此,系统解析和阐明Ⅳ型胶原蛋白的结构与功能以及Ⅳ型胶原基因相关突变造成的肾脏疾病图谱,对此类疾病的诊治具有重要的指导意义。
结合厂房变电所接地工程案例,分析出现火灾报警问题的原因,并对由此引发的接地问题进行探讨,建议变电所的设计采用TN-C-S系统,设计、制造、施工、运维等环节应重视电缆色标的正确使用。
移动边缘计算(Mobile Edge Computing,MEC)是一种移动边缘网络环境中的计算模式。MEC将网络内用户设备产生的计算任务迁移至位于网络边缘的计算节点进行计算,并将计算结果返回给设备,这一过程被称作任务卸载(Task Offloading)。任务卸载在大幅度提高用户设备内程序运行速度的同时,还能够减少通讯延迟、节省设备能耗,提升处于网络内的用户设备的服务质量(Quality of
时间序列广泛存在于实际的复杂动态系统中,对其进行分析与建模来挖掘复杂系统动态行为变化的同时,开展前瞻性预测并提供辅助性决策具有重要的意义。然而,随着大数据时代的发展,并且实际系统往往处于复杂的噪声环境中,给设计适合于动态系统的在线学习方法带来了一定的困难。因此,本文以基于鲁棒核自适应滤波器的时间序列在线预测为课题,设计鲁棒的在线预测模型并提高更新过程中对噪声的抑制能力,降低算法的时间和空间复杂度,
随着通信技术的发展以及Wi-Fi在城市的全面覆盖,利用Wi-Fi信号进行环境感知逐渐成为研究热点,动作手势识别、摔倒呼吸检测在人机交互、财产安防、健康监护等领域都得到了广泛的应用。基于Wi-Fi的方法设备价格低廉可广泛部署,不要求被检测人员携带任何特殊设备。与基于计算机视觉的方法相比,其对光照条件无要求,也不存在视觉盲区和隐私泄漏的问题,为实际应用提供了极大便利。本文主要研究内容如下:本文提出了一
随着现代网络的快速发展,无线数据流量产生爆炸式增长,移动应用程序对网络延迟的要求越来越高,因此网络服务提供商在降低服务延迟和带宽压力方面面临巨大挑战。5G凭借高速率、低时延、多连接的特性,可满足各类行业和企业对人工智能和高性能服务的巨大需求。移动边缘计算(MEC)作为5G技术的重要组成部分,其通过在网络边缘部署计算和存储资源为下一代5G接入网络提供极低的延迟服务。但是移动边缘中计算资源和存储容量是
发光二极管(Light-Emitting Diode,LED)和智能手机的普及促进了基于可见光通信(Visible Light Communication,VLC)室内定位技术的研究,使其成为了室内定位技术中的研究热门之一。室内环境比较复杂,镜子、玻璃和屏幕等光滑物体会发生镜面反射,产生与真光源镜面对称的伪光源。在定位过程中,如果使用了伪光源的位置信息会降低定位精度,甚至错误定位,降低定位的可靠性